

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

	Home

	Using uibuilder

	A first-timers walkthough

	Did you know?

	Creating data-driven web apps

	Configuring uibuilder

	Standard messages

	Creating Templates

	Browser auto-refresh

	Zero-code UI creation

	The nodes

	uibuilder

	uib-cache

	uib-element

	uib-update

	uib-sender

	uib-html

	uib-save

	The front-end client

	Introduction

	Features

	Controlling from Node-RED

	Dynamic, config-driven UI’s

	Functions

	Variables

	Custom Events

	uib-brand Style Sheet

	Troubleshooting

	Old uibuilderfe client library

	Zero-code element types

	Tables

	Forms

	Lists

	HTML

	Headings, text boxes, etc.

	UI frameworks & builds

	VueJS complexities

	VueJS components

	Svelte

	Avoiding a build step

	Optimise & transpile (build)

	Snowpack as build tool

	How to

	How & why to use the sender node

	How & why to use the list node

	Use the cache node

	CSS Selectors

	Change the root folder (uibRoot)

	Create instance-specific API’s

	Other How-To’s

	Security

	Securing uib web apps

	Securing Data

	Securing apps using NGINX

	Developer documentation

	Processes

	nodes/uibuilder.js

	nodes/uibuilder.html

	nodes/uiblib.js

	nodes/tilib.js

	nodes/web.js

	nodes/socket.js

	front-end/src/uibuilderfe.js

	Testing

	Regression tests

	Glossary of terms

	Changelog 🔗

	Roadmap

	Main readme 🔗

	Archives

	v5 Changelog

	v3/4 changelog

	v2 breaking changes

	v2 changelog

	v1 changelog

	Links

	uibuilder license 🔗 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/blob/main/LICENSE]

	uibuilder WIKI 🔗 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki]

	Much Ado About IT (Blog) 🔗 [https://it.knightnet.org.uk]

	Node-RED 🔗 [https://nodered.org/]

title: uibuilder Documentation
description: >
uibuilder provides a stand-alone web server that allows for interfacing with Node-RED, while giving you help and complete freedom to create custom web interfaces.
created: 2019-06-16 16:16:00
lastUpdated: 2023-04-02 18:06:21

It includes many helper features that can reduce or eliminate the need to write code for building data-driven web applications and user interfaces for Node-RED.

All you need to start making use of uibuilder is a uibuilder node added to your flows. Select a suitable URL path and deploy. Then click on the “Open url” button to open the new page in a new tab.

Now you can edit the front-end html, JavaScript and CSS files. You can also send messages to your front end and send messages back to Node-RED.

uibuilder comes with some templates to give you some front-end code to get you started. Load a different template if you like, use the editor to customise the UI. Use the library manager if you need any front-end libraries or frameworks (this adds the appropriate folders to the web server so that you can access them from your UI).

uibuilder also comes with a number of example flows. These are accessed from Node-RED’s “hamburger” menu, import entry. They are fully working flows that demonstrate the use of uibuilder.

Getting help and contributing

node-red-contrib-uibuilder is contained in a GitHub repository [https://github.com/TotallyInformation/node-red-contrib-uibuilder] and is published on npmjs.org [https://www.npmjs.com/package/node-red-contrib-uibuilder] for ease of installation.

Help is available in this documentation, the help sidebar in Node-RED, and the GitHub WIKI [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki]. If you get stuck, you can also create a new topic in the Node-RED Discourse Forum [https://discourse.nodered.org/tag/node-red-contrib-uibuilder] or in the GitHub discussion section [https://github.com/TotallyInformation/node-red-contrib-uibuilder/discussions].

Issues occuring with uibuilder should be raised in the GitHub issues log [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues] but please feel free to discuss in the Node-RED forum first if you like.

WIKI, code (PR’s), documentation, and examples are all welcome contributions and I always aim to give credit to contributors. Please see the contribution guidelines [https://github.com/TotallyInformation/node-red-contrib-uibuilder/blob/main/.github/CONTRIBUTING].

Using uibuilder

	A first-timers walkthough of using uibuilder - Let’s get started!

	Did you know? - Things you might not know about uibuilder, hints and tips

	Creating data-driven web apps with uibuilder and Node-RED - Different styles and workflows you can use

	Configuring uibuilder - Configure the uibuilder platform. Affects all uibuilder nodes

	Standard messages - A catalogue of messages and properties

	Creating Templates - Pre-defined and reusable front-end code, dependencies, and optional build steps

	Browser auto-refresh - Automatically reload your page after a change

	Zero-code UI creation - Dynamically creating web UI’s

The nodes

	uibuilder - The main node. You need at least one of these in order to make full use of all of the features.

It is this node that creates a custom web server. You can have many nodes if that best meets your needs. But each node can serve many pages.

It also creates a set of filing system folders and files on the Node-RED server. These define the front-end UI you see in the browser as well as providing some important configuration.

This node is also where you configure much of uibuilder’s web server such as installing helper libraries that you may wish to use to support your interfaces (e.g. VueJS, jQuery, etc). You can also use it to edit your custom UI code.

	uib-cache - Provides a capability to temporarily or permanently save data sent to uibuilder (and hence to your browser) such that it can be automatically replayed to new clients that connect later.

	uib-element - Converts raw data to UI configuration data.

This is one of the zero-code capabilities of uibuilder.

It allows your input data to be automatically converted to a UI description. That description data is “hydrated” by the uibuilder client library into actual HTML. The output of this node can also be further manipulated. The uib-html node uses the same code and can be used to hydrate the description into HTML in Node-RED flows.

The UI configuration data is a documented and re-usable standard, other Node-RED nodes could be created to output or consume the same data.

	uib-update

	uib-sender

These will be available in the next release:

	uib-html - Converts (hydrates) UI configuration data into HTML.

Optionally wraps the output with full HTML document tags so that snippets of UI input data can be converted to full pages.

Output can be saved to files using uib-save, this then allows you to have highly efficient “static” HTML created from data that perhaps is only occasionally updated.

Output can also be used with other tools such as the http-in/http-out nodes or the Node-RED Dashboard.

	uib-save - Save files to a specific uibuilder node instance.

A convenience node that saves you needing to think about where in the servers filing system resources need to be saved.
By specifying the name of an existing uibuilder node, it will work out the correct location for you.

Can be used to save anything that can be “serialised [https://developer.mozilla.org/en-US/docs/Glossary/Serialization]”. Including code, data, images, etc.

The front-end (browser) client library

	Introduction

	Features

	Controlling from Node-RED

	Dynamic, config-driven UI’s

	Functions

	Variables

	Custom Events

	uib-brand Style Sheet - How to use the uibuilder standard style sheet uib-brand.css

	Troubleshooting

	Old uibuilderfe client library

Zero-code element types

	Tables

	Forms

	Lists

	HTML

	Headings, text boxes, etc.

UI frameworks and builds

Working with uibuilder and specific front-end frameworks.

	VueJS complexities

	VueJS Components

	Svelte

	Avoiding a build step

	Optimise & transpile (build)

	Snowpack as build tool

	W3C Web Components - TBC

How to

	How & why to use the sender node

	How & why to use the list node

	How to use the cache node

	CSS Selectors

	Changing the root folder (uibRoot)

	Create instance-specific API’s

	Other How-To’s

Security

	Securing uib web apps

	Securing Data

	Securing apps using NGINX

Developer Documentation

Deep dives into the internals of uibuilder. This is where to go if you need to understand how things work. These documents may lag behind the actual code however, so it is always worth also referencing the current codebase.

	uibuilder node

	nodes/uibuilder.js - Main node definition.

	nodes/uibuilder.html - Node-RED Editor configuration panel for the main node.

This is not developed directly. The actual code to edit is in src/editor/uibuilder/ and is built using gulp scripts.

	nodes/lib/uiblib.js - A uibuilder-specific utility library.

	nodes/lib/tilib.js - A generic Node.js utility library.

	nodes/lib/web.js - Web interface library.

	nodes/lib/socket.js - Socket.IO communications library.

	nodes/lib/package-mgt.js - Package management (npm) library. TBC.

	nodes/lib/admin-api-v2.js - v2 Admin API library. TBC.

	nodes/lib/admin-api-v3.js - v3 Admin API library. TBC.

	uibuilder front-end client library

	front-end/uibuilder.iife.min.js & front-end/uibuilder.esm.min.js Modern library builds

These are generated by a gulp script that uses esbuild from src/front-end-module/uibuilder.module.js.

	front-end/uibuilderfe.min.js - Old uibuilderfe client library

This is generated by a gulp script from src/front-end/uibuilderfe.dev.js.

	uib-cache node - TBC

	uib-element node - TBC

	uib-update node - TBC

	uib-sender node - TBC

	Gulp scripts - TBC

Testing

Some information on testing uibuilder. Unfortunately, I have no real clue about automated testing and TLD, if you would like to contribute something, please do!

	Regression Tests

Other

	Glossary of Terms

	Changelog - What has changed between releases. What is currently in-progress/outstanding (the “unreleased” section)

	Roadmap - All about where uibuilder is going in general, what I think needs doing next and some speculation about longer-term change.

	Main Readme - This is what appears in GitHub [https://github.com/TotallyInformation/node-red-contrib-uibuilder], npm [https://www.npmjs.com/package/node-red-contrib-uibuilder%5D] and the Node-RED flows page [https://flows.nodered.org/node/node-red-contrib-uibuilder].

Archives

	v5 Changelog

	v3/4 Changelog

	v2 Breaking Changes

	v2 Changelog

	v1 Changelog

[!TIP]
These are the docs for uibuilder v6. If you need the v5 or earlier docs, the easiest way is to set up a test instance of Node-RED and manually install the appropriate uibuilder version: npm install node-red-contrib-uibuilder@5 then use the documentation links from a uibuilder node.

title: Auto-refresh the browser when developing
description: >
Describes how to make your page refresh automatically when developing front-end code.
created: 2022-02-15 20:56:20
lastUpdated: 2022-02-15 20:56:24

Reload message

The uibuilder front-end library has a a reload window tab command built in. This can be triggered by sending a standard message into a node-red node with the following data:

{
 "_uib_": {
 "reload": true
 }
}

You can use a watch node to trigger a reload by watching the appropriate file or folder and connecting the watch node to a change node that sets the _uib.payload property and then sends it to the uibuilder node as in this example:

[image: _images/watch-example.png]Watch autorefresh example

Editing files in the Node-RED Editor

uibuilder has a file editor feature built in. If you are using that (only recommended for fairly small edits), you can tell uibuilder to automatically reload the browser tab whenever you press the save button.

Using Microsoft Edge developer tools with VScode

Microsoft Edge has an experimental settings as part of its DevTools. This works when you are running Node-RED on the same device as the browser.

Find “Open source files in Visual Studio Code” under Settings > Experiments. Turn it on and restart the tools window.

Then you will need to close and reopen the page you want to edit and tell Edge to trust DevTools access to the filing system.

Finally, you will need to make sure that you have the correct folders added under Settings > Workspace. You will probably need to add your uibRoot folder. You may need to close and reopen the page again.

After that, DevTools should indicate when it has matched a served file with one on the filing system. Those files can be edited in either DevTools or VScode. On save, the browser page automatically updates. This works for CSS and JavaScript files.

Use the watch approach above for HTML files.

Web development build tools

Most build tools contain their own development server that includes auto-update.

To use these with uibuilder, you generally have to make some code changes in your index.html and index.js files to allow for the fact that a different, non-Node-RED web server is presenting the files.

You will need to pass some parameters to the uibuilder.start function in index.js and will need to make the ./ and ../uibuilder/vendor/ URL’s in index.html absolute to include the Node-RED URL.

It is perfectly OK to leave those changes in for production use. However, note that you will need to make further changes if you put your Node-RED/uibuilder server behind a proxy or change its port number. Or change any of the Node-RED settings that impact the URL.

If you are using Svelte and its development tools, they are the exception to this rule as the dev-server manages to auto-update the standard page.

Running Node-RED from a development service

Tools such as PM2 for running Node.js applications have watch features built in.

This is really only useful for developing custom nodes as the service will restart Node-RED on changes.

title: Using the Cache node
description: >
Describes how and why to use the uib-cache node. How to cache and replay messages when a new uibuilder client loads
or reloads a uibuilder supported page.
created: 2022-01-07 22:01:49
lastUpdated: 2023-03-04 15:36:37

Moved to nodes/uib-cache

title: Changing the uibuilder master root folder (uibRoot) in settings.js
description: >
Describes how to change uibRoot and what happens when you do.
created: 2021-07-03 20:46:33
lastUpdated: 2021-07-03 22:21:56

What is the uibRoot folder?

The uibRoot folder on your Node-RED server is where all of the front-end files live along with security middleware, common front-end resources, security settings and the lists of packages that are served to the front end (e.g. VueJS).

By default, uibuilder will create a folder for you under your userDir folder - typically ~/.node-red/uibuilder/.

If you have Node-RED projects turned on, the default uibRoot folder will sit under your projects root folder instead.

?> Note that uibRoot will contain a sub-folder for every instance of uibuilder you have deployed. In addition, it will contain a .config and a common sub-folder.

Whenever Node-RED is started, the uibuilder module will check every instance (deployed node) of uibuilder and will ensure that a sub-folder named after the url configuration setting of the node exists within uibRoot.

If the uibuilder module has to create a missing sub-folder for a deployed node, it will use the configured Template to pre-populate the sub-folder.

!> If you change the uibRoot folder and restart Node-RED, ALL existing instances of uibuilder in your flow will get the appropriate templates copied. Any existing code will not be copied. However, it is not deleted either so you can manually copy the files and folders to the new location if you want to. If you have never set a Template for an instance, the “Blank” template will be used. This does not use any front-end framework. This is a change in v4+ since previously, the Vue/bootstrap-vue template was the default. If you want a Vue/Bootstrap template, simply change the selected Template to Vue or simple Vue.

 title: Description of the uibuilder components description: > What is the structure of uibuilder? How does it related to Node-RED and the browser? created: 2023-02-12 02:23:54 lastUpdated: 2023-02-12 02:24:02

title: Description of the uibuilder components
description: >
What is the structure of uibuilder? How does it related to Node-RED and the browser?
created: 2023-02-12 02:23:54
lastUpdated: 2023-02-12 02:24:02

[image: _images/uibuilder-components.svg]Components overview

 title: Configuring uibuilder Templates description: > Describes the structure of a template package and how to deploy them. created: 2022-04-09 19:06:00 lastUpdated: 2022-09-18 14:55:59

title: Configuring uibuilder Templates
description: >
Describes the structure of a template package and how to deploy them.
created: 2022-04-09 19:06:00
lastUpdated: 2022-09-18 14:55:59

uibuilder has a feature that lets you quickly create a web app based on a template configuration.

Creating

You can create a flow with a uibuilder node, set the URL and deploy (which creates the folder structure), change your front-end code including any build-step, local libraries, API’s, etc. Add a README file and make any changes you need to package.json.

Using

You can then put that whole folder structure into a GitHub repository which can then be referenced when you want to create a new copy of the app. Simply create a new flow with a uibuilder node, set the URL, deploy. Then change the template to the githubname/reponame and the whole thing will overwrite the current folder.

Template Structure

TBC. Currently, please see the example external template at TotallyInformation/uib-template-svelte-simple [https://github.com/TotallyInformation/uib-template-svelte-simple] or TotallyInformation/uib-template-test [https://github.com/TotallyInformation/uib-template-test].

Additional information

	Some additional information on templates can be found in the Configuring uibuilder page.

	There is a catalogue of external templates at https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/External-Templates-Catalogue - please feel free to add your own templates there or let me know and I can add them for you.

 title: Did You Know? description: > Things you might not know about uibuilder. created: 2022-11-30 17:35:40 lastUpdated: 2022-11-30 17:35:46

title: Did You Know?
description: >
Things you might not know about uibuilder.
created: 2022-11-30 17:35:40
lastUpdated: 2022-11-30 17:35:46

	There is a set of new client (front-end) libraries

uibuilder.iife.min.js and uibuilder.esm.min.js. These are the new standard client libraries, there are some examples that use them and I’ll be updating all of the examples when time permits. How to use them is described here [https://totallyinformation.github.io/node-red-contrib-uibuilder/#/uibuilder.module].

	You can create and update web page content and design direct from Node-RED!

Using both no-code (via the uib-element and uib-update nodes) and/or using low-code (via msg._ui configuration data) approaches. Both approaches can also be used together. This does not preclude you from using additional front-end frameworks either.

See here for details.

	You can use uibuilder with any front-end framework

However, frameworks that need a build step can be somewhat intimidating to get started. The front-end builds page gives more detail. A future version of uibuilder will add some additional helpers to make it easier.

uibuilder is regularly tested with VueJS and Svelte but many other frameworks are known to work and some have examples in the WIKI [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki].

	uibuilder comes with example flows

See Node-RED’s import function in the Editor.

	uibuilder comes with some built-in templates

These set up your front-end code for you, demonstrating the basic requirements. But did you know that it also supports external templates [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/External-Templates-Catalogue]. Use these when you have a visual baseline that you want to reproduce or share with customers/colleagues. An external template is simply a preconfigured uibuilder instance folder that you put on GitHub. Why not showcase your external templates on the WIKI [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/External-Templates-Catalogue].

	There is a first-timers walkthrough for getting started with uibuilder

	There are some YouTube videos on how to use uibuilder

Julian Knight’s uibuilder playlist [https://www.youtube.com/playlist?list=PL9IEADRqAal3mG3RcF0cJaaxIgFh3GdRQ].

	You don’t have to use Node-RED’s ExpressJS web server with uibuilder

If you want to have your own custom web server settings, a few changes in Node-RED’s settings.js will let you do that.

That even lets you use server-side templating in your UI! EJS templates [https://ejs.co/] can be turned on.

See Configuring uibuilder for details.

	uibuilder provides data and middleware capabilities for custom security

While uibuilder does not provide any built-in security features, it does provide ExpressJS and Socket.IO middleware capabilities using external, shared files. These can be used for authentication and authorisation decisions.

It also provides a stable client ID, client IP address, the source page nameg, and other client data in both control and standard messages. This can help with authentication and authorisation processing using Node-RED flows or the middleware as you prefer.

This documentation also contains information specific to security both Node-RED and uibuilder. Specifically it documents how to use an external proxy server to handle authentication.

	The default folder for all uibuilder content is ~/.node-red/uibuilder

However, you don’t have to keep it there. You can make it any folder that is accessible to Node-RED.

Each uibuilder node gets its own sub-folder named after the url name you specify in the node. The url value is also used as the path in the browser location. So a url named test would have a sub-folder ~/.node-red/uibuilder/test and a browser location of http://node-red.server:1880/test/. These are simple examples and several Node-RED variables can change particularly the browser location.

 title: How-to configure and use a front-end build step using Snowpack description: > Describes how to use Snowpack to build your front-end code. created: 2021-04-22 09:53:00 lastUpdated: 2022-02-05 21:19:50

title: How-to configure and use a front-end build step using Snowpack
description: >
Describes how to use Snowpack to build your front-end code.
created: 2021-04-22 09:53:00
lastUpdated: 2022-02-05 21:19:50

Status: Incomplete

Snowpack’s development server does not dynamically update the build directory and so does not directly integrate with uibuilder. You can still use Snowpack to package code for uibulder however.

See the general Front-end Builds page for background information on what a build step is and what tools you might want.

This page covers the installation and configuration of the Snowpack [https://www.snowpack.dev/] build tool to use with uibuilder.

Important note: This how-to may use the command-line. When it does, it is assuming that the starting folder
is the root of your uibuilder project on your Node-RED server. For example, if you have a uibuilder node with
a URL set to myapp, your start folder is likely to be something like ~/.node-red/uibuilder/myapp.

Make sure you have a package.json file (run npm init -y if not), then:

	Install Snowpack

	Install the Vue or other plugin’s as needed - npm install --save-dev @snowpack/plugin-vue

	Run npx snowpack init

	Configure your snowpack configuration file as shown below.

	Run npx snowpack dev to use the development server (don’t forget to change the .html links and the uibuilder.start namespace). Or, run npx snowpack build to update the dist folder ready for use.

Note that you have to use npx to run snowpack when it is installed locally as recommended. Alternatively, you can set up an npm script in your package.json file, in that case, you don’t need to use npx since npm will know where the snowpack executable exists.

Don’t forget to change the uibuilder node’s advanced settings to use the dist folder once you have built your code.

Default Snowpack config file

snowpack.config.js

// Snowpack Configuration File
// See all supported options: https://www.snowpack.dev/reference/configuration

/** @type {import("snowpack").SnowpackUserConfig } */
module.exports = {
 mount: {
 // Use the ./src folder for source files
 'src': '/'
 },
 plugins: [
 '@snowpack/plugin-vue', // Only if using VueJS
],
 packageOptions: {
 /* ... */
 },
 devOptions: {
 /* ... */
 },
 buildOptions: {
 // Use the ./dist folder for build files
 'out': 'dist',
 },
}

 title: Front-End Build Steps and Tools description: > Describes how to use a build step to transpile and optimise your front-end code. created: 2021-04-22 09:53:00 lastUpdated: 2022-12-01 19:51:39

title: Front-End Build Steps and Tools
description: >
Describes how to use a build step to transpile and optimise your front-end code.
created: 2021-04-22 09:53:00
lastUpdated: 2022-12-01 19:51:39

A build step is simply a way to take things that your browser wont understand directly (like .vue, .jsx files)
and convert them to somthing that they can understand.

Along the way, it will try to optimise everything to give the best possible performance.

	Why have a build step (and why not)

	Things to watch out for

	Using a build development server

	Tools

	Snowpack

	ESbuild

	Webpack

	Parcel

	Rollup

	Vite (by VueJS author Evan You)

Why have a build step (and why not)

If you want to make most use of the more complex features of a front-end library or if you want to write using the
latest language features but still need to support older browsers, then a build step will almost certainly be
needed.

A build step may also be desirable if you need to squeeze more performance out or reduce the size of your web app.

Otherwise, you may wish to try and avoid the complexity of setting up your build environment, running dev servers
and so on. One of the reasons that uibuilder uses VueJS as its default template is that it is one of the best
front-end libraries for avoiding build steps. It even has a dynamic loader (3rd party extension) and an in-browser compiler.

Things to watch out for

	The tooling is likely to have its own desired folder structure. You will most likely have to change the configuration
to make it use the folders for uibuilder on the Node-RED server.

	If using the build-tool’s development server, you will need to change some code. See the next section for details. The Svelte development server is the only known exception to this as it “just works” with Node-red/uibuilder.

Using a build development server

Many build tools and some front-end frameworks have “live servers” to support development. These automatically reload the page being developed
whenever something changes.

At present, only the Svelte development server will work correctly without you making some temporary changes to your front-end code.

For all other development servers, you will need to make the following changes:

	In index.html - replace the default ./xxxx and ../uibuilder/xxxx URL’s with ones that start with the correct Node-RED/uibuilder server. e.g. http://localhost:1880/xxxx.

	In index.js - replace the uibuilder.start() with uibuilder.start('http://localhost:1880/aa') (old client example) or uibuilder.start({ioNamespace:'http://localhost:1880/aa'}) (new client example) where the protocol, server name and port are your Node-RED/uibuilder server as above and /aa is the uibuilder node instances URL with a leading /. That is the Socket.io namespace.

Note that if you have set the httpNodeRoot in Node-RED and you are not using uibuilder’s custom ExpressJS server, you must also include the second parameter which overrides the Socket.IO path such that it includes the httpNodeRoot. Example: if httpNodeRoot=’nr’, the path parameter must be /nr/uibuilder/vendor/socket.io.

Don’t forget to change these back when you are putting your code live. Though your live code will still work, it would be more fragile and would break if you change the server details.

It is also possible that you could automate these changes using the build tool. Using environment variables to tell the tool which url’s to use. If not, you could automate the whole process using a tool such as GulpJS [https://gulpjs.com/].

Tools

There are many options when it comes to tooling for your build step, here are some of the main ones and some of the latest
tools that are a LOT simpler than the earlier ones

Snowpack [https://www.snowpack.dev/]

“a lightning-fast frontend build tool, designed for the modern web”

See the How-to configure and use a front-end build step using Snowpack page for more details.

Snowpack works well with uibuilder.

ESbuild [https://esbuild.github.io/]

Unlike the other tools listed here, esbuild only does a build. It does not attempt to provide a development server or do clever transpilation (converting from a newer version of JavaScript to an older one).

And that may well be all that you need since Node-RED is providing a web server and modern browsers are less likely to require transpilation.

Julia Evans is a well-known blogger and has written a simple guide to using esbuild with VueJS [https://jvns.ca/blog/2021/11/15/esbuild-vue/].

Webpack [https://webpack.js.org/]

TBC

Parcel [https://parceljs.org/]

TBC

Rollup [https://rollupjs.org/]

TBC

Vite [https://vitejs.dev/] (by VueJS author Evan You)

“an opinionated web dev build tool that serves your code via native ES Module imports during development and bundles it with Rollup for production.”

While Vite was written by the author of VueJS, it is certainly not only for Vue projects. Out of the box, it supports REACT, JSX as well as various CSS pre-processors and templates. It uses ESBuild under the skin.

It uses native browser ES imports to make everything fast.

 title: Working with the uibuilderfe Front-End Library description: > How to work with uibuilder’s front-end library in your own UI code. created: 2021-02-17 14:28:00 lastUpdated: 2022-11-26 17:32:09

title: Working with the uibuilderfe Front-End Library
description: >
How to work with uibuilder’s front-end library in your own UI code.
created: 2021-02-17 14:28:00
lastUpdated: 2022-11-26 17:32:09

!> This page refers to the “old” original front-end library for uibuilder. There is now a new library that will eventually replace this one. Please see the new front-end library pages. This older library has been functionally stabilised (there will not be any further enhancements after uibuilder v5). It still works as of uibuilder v6.0 but will eventually be deprecated.

uibuildefe.js is the library that lets you interact with your uibuilder nodes in Node-RED.

It manages the communications and provides a number of helper functions to make life easy.

The detailed documentation for the library is in the uibuildefe developer documentation. If you don’t find what you need here, please look there.

Contents

	Contents

	Startup

	Startup Optional Parameters

	Parameters

	Examples

	Errors

	Events

	Example onChange event handler

	Currently available pre-defined events

	Variable Handling

	Helper Methods (functions)

	autoSendReady Turn on/off the ready for content control msg

	clearEventListeners Forcibly removes all event listeners from the events array

	debug Turn on/off debugging console messages

	eventSend Helper fn to send event data

	get Get the value of a uibuilder variable

	me Return uibuilder info

	msg Convenience method to access the last standard msg from Node-RED

	onChange Subscribe to a uibuilder variable change event

	send Send a standard msg to Node-RED

	sendCtrl Send a control msg to Node-RED

	set Set the value of a uibuilder variable, creates subscribable event for changes

	setOriginator Sets an originating node ID

	setPing Check if Node-RED/uibuilder server is alive, may be used to trigger session extensions

	showComponentDetails (VueJS only) Return a control msg contining details of a Vue component

	showToast Shows a popup message in the UI

	start Start up the front-end library

	uiDebug Conditional debug output (controlled by debug setting)

Startup

In order to use the front-end library for uibuilder, you must call the start function: uibuilder.start().

This should be called once all of the page resources have loaded & the core DOM has rendered.

Startup Optional Parameters

If initialising this library from a page that is not in the root folder for the uibuilder instance (or indeed is from a different server), the library cannot work out the correct Socket.io path nor the actual root URL and so you have to supply this yourself. e.g.

In addition, if you are using VueJS, you can pass the Vue app instance to the start function to allow uibuilder to work some magic such as providing direct access to the toast popups code-free.

Parameters

	namespace {Object=|string=} Optional. One of:

	Object containing ref to vueApp,

	Object containing settings using the property names given here, or

	IO Namespace override. Changes self.ioNamespace from the default.

If you are not sure about the correct namespace, use the “Instance Details” button in the uibuilder node configuration panel (in the Node-RED Editor) and search for “ioNamespace” in the resulting page.

The namespace to use here is that result prefixed with a leading /. However if you are serving your code from a different server or a different port on the same
server (e.g. when using a build tool dev server), you must include the full URL of Node-RED (or the uibuilder custom URL if using its custom ExpressJS server feature).

	ioPath {string=} Optional. Note that you should not need to change this. It changes self.ioPath from the default

The ioPath is a combination of:

	A leading /,

	httpNodeRoot - normally empty unless you have changed it in settings.js

	“/uibuilder/vendor/socket.io”

While uibuilderfe does its best to work out the ioPath (from cookies first and then the request url), it cannot always determine the httpNodeRoot. Sometimes, if you are serving your js code from a different server or a different url path on the same server (e.g. when using a build tool dev server), it may not be possible. It is in these cases that you must specify it manually. From v5, this should now rarely be needed.

	vueApp {Object=} Optional. reference to the VueJS instance

Examples

// Socket.io Namespace, IO path (no httpNodeRoot defined)
uibuilder.start('/uiburl', '/uibuilder/vendor/socket.io')

// Just passes the VueJS app object to enable Vue magic functions
uibuilder.start(this)

// Pass a settings object
uibuilder.start({
 namespace: '/uib',
 ioPath: '/nr/uibuilder/vendor/socket.io', // httpNodeRoot defined as "nr" in settings.js
 vueApp: this
})

Errors

If you get continual uibuilderfe:ioSetup: SOCKET CONNECT ERROR error messages in your browser console, the most likely reason is that you need to pass the namespace and path parameters because the library can’t work them out. But first, check the content of the uibuilder cookies using your browser’s dev-tools to make sure that they contain something sensible.

If you get sudden client disconnects. Check the size of the data you are sending or recieving. When Socket.IO changed from v2 to v3, they changed the default maximum msg size from 100MB to 1MB. If you try to send a msg in either direction that is >1MB, the socket will disconnect. You can change this size by changing the uibuilder.socketOptions in settings.json.

 /** Optional: Socket.IO Server options
 * See https://socket.io/docs/v4/server-options/
 * Note that the `path` property will be ignored, it is set by uibuilder itself.
 * You can set anything else though you might break uibuilder unless you know what you are doing.
 * @type {Object}
 */
 socketOptions: {
 // Make the default buffer larger (default=1MB)
 maxHttpBufferSize: 1e8 // 100 MB
 },

Events

uibuilderfe has its own, simple, event handling system. This lets you “subscribe” to an event with a function that is exectuted automatically when the event fires.

Events are created automatically by the internal self.set function that is used to update variables. So any internal variable updated this way automatically gets an event named after the variable name. In addition, using uibuilder.set('varname', newVal) also creates an event.

Events are subscribed to using the uibuilder.onChange(evtName, callback) function. Where the callback is a function that is executed whenever anything triggers that event name.

Event processing is highly efficient since nothing actually happens if no onChange function has been registered against an event. Multiple onChange callbacks can be assigned to an event which is helpful if you have front-end code such as components. In general though, try to minimise the number of onChange entries.

Most commonly, the only onChange event handler you will define is the one that fires whenever a msg is received from Node-RED:

Example onChange event handler

The most common event used is when the msg variable is updated by an incoming message from Node-RED.

uibuilder.onChange('msg', function(msg){
 console.info('msg received from Node-RED server:', msg)
})

Currently available pre-defined events

	ctrlMsg - triggered whenever the client receives a control message from the server.

	ioConnected - triggered whenever the client connects or disconnects from the server over Socket.IO.

	msg - triggered whenever the client receives a standard msg from the server. e.g. you send a msg into the input port of the node.

	msgsCtrl - triggered whenever the client receives a control message from the server. NOTE: This is superfluous and may be removed in a future release.

	msgsReceived - triggered whenever the client receives a standard msg from the server. Counts the number of messages received. NOTE: This is superfluous and may be removed in a future release.

	msgsSent - triggered whenever the client sends a standard message to the server. NOTE: This is superfluous and may be removed in a future release.

	msgsSentCtrl - triggered whenever the client sends a control message to the server. NOTE: This is superfluous and may be removed in a future release.

	ping - triggered as a result(s) of a uibuilder.setPing(ms). Contains the resulting status and returned headers.

	sentCtrlMsg - triggered whenever the client sends a control message to the server.

	sentMsg - triggered whenever the client sends a standard message to the server.

	serverShutdown - triggered when the Node-RED server sends a shutdown control msg to the client. This happens before Node-RED actually shuts down. No data is returned to the callback in this case.

	serverTimeOffset - triggered when the Node-RED server sends the initial connection message to the client.

	socketError - triggered if the server sends a socket error to the client. Probably triggered by socket middleware. Returns the error as data to the callback.

Variable Handling

All public variables must be accessed from your own code using the getter:

var myvar = uibuilder.get('varName')

All public variables must be changed from your own code using the setter:

uibuilder.set('varName',value)

You can use the setter to add your own variables to the uibuilder object. These will then have an event handler attached so that you can monitor for changes with uibuilder.onChange('varName', function(varName) { ... })

The list of accessible, pre-defined variables is provided on the uibuildefe-js developer documentation page.

Helper Methods (functions)

uibuilderfe has a number of helper functions that are aimed at making life easier for the author of a web UI.

autoSendReady Turn on/off the ready for content control msg

Turns on/off the “ready for content” control message that is normally sent back to Node-RED on window.load

Set to false early in the processing if you want to get control over when Node-RED sends you data.

clearEventListeners Forcibly removes all event listeners from the events array

Use if you need to re-initialise the environment.

debug Turn on/off debugging console messages

Turns on/off debugging. See the output in your browser’s developer console.

Example: uibuilder.debug(true)

Best used in the created section of Vue or similar frameworks.

eventSend Helper fn to send event data

A simple helper function designed to be the target method for DOM events. Typically used for the click event handler for a button.

A msg will be sent back to Node-RED containing some information as shown in the example below

Vue/bootstrap-vue example:

In index.html

<b-button id="myButton1" @click="doEvent" data-something="hello"></b-button>

Note that all data-xxxx attributes are

In index.js

// ...
methods: {
 doEvent: uibuilder.eventSend,
},
// ...

The msg returned to Node-RED will be:

{
 "topic": "", // Optional. Will include the topic from the last inbound msg if it is available

 "uibDomEvent": {
 // The html id attribute. If that doesn't exist, the name attribute
 // is used. If that doesn't exist, the 1st 25 chars of the inner text is used
 "sourceId": "myButton1",
 // The DOM event that triggered the function
 "event": "click",
 },

 // Each `data-xxxx` attribute is added as a property
 // - this may be an empty Object if no data attributes defined
 "payload": {
 "something": "hello"
 }

}

get Get the value of a uibuilder variable

Get the value of a variable inside the library.

Note that the get function protects private variables preventing easy access. This is not a security function since JavaScript has no mechanism for completely protecting private variables.

me Return uibuilder info

Returns the front-end library version as a string unless debugging is turned on. In which case it returns the full self object - use with caution.

msg Convenience method to access the last standard msg from Node-RED

A convenience method, returns the current value of the last received standard (not control) message.

onChange Subscribe to a uibuilder variable change event

Subscribe to an event. Has two parameters. The first is the name of the event, the second is a callback function to be triggered when the event is fired.

Example:

uibuilder.onChange('msg', function(msg){
 console.info('msg received from Node-RED server:', msg)
})

send Send a standard msg to Node-RED

Send a standard message back to Node-RED. Requires an object as its single parameter. The object is the msg object to be sent.

The library will add some standard properties to the message so you only need to add your own data.

sendCtrl Send a control msg to Node-RED

Send a control message back to Node-RED. Requires an object as its single parameter. The object is the msg object to be sent.

Note that you shouldn’t really need to ever send a control msg since the library takes care of all of that. However, there may be rare occasions when you might want to do something like trigger a cache replay or cache clear.

The library will add some standard properties to the message so you only need to add your own data.

set Set the value of a uibuilder variable, creates subscribable event for changes

Set a variables value inside the library. Also creates an event that can be subscribed to using the onChange function.

Note that the set function protects private variables and prevents the overwriting of internal function names.

setOriginator Sets an originating node ID

Manually sets the default originator node id. Not generally required since the uib-sender node will set the originator automatically in the message it sends and this will be used by the fe. However, might be useful if you want to return a msg to a specific node. However, the node would need to be a custom node that recognises it otherwise, you would need to route the msg yourself in your flow.

setPing Check if Node-RED/uibuilder server is alive, may be used to trigger session extensions

Calling without an argument or with it set to 0 (zero), will cancel any repeating pings and will send an individual ping to the uibuilder ping URL. With a non-zero argument, will repeatedly ping every n milliseconds.

You can use this to check whether the uibuilder web server is alive. It could also be used to automatically extend a client security session (via an external proxy or via the ExpressJS uibuilder custom middleware function). It also returns some data including the HTTP status number and the server response headers. So it can be a useful way to obtain the ExpressJS server response headers.

showComponentDetails (VueJS only) Return a control msg contining details of a Vue component

This sends a control msg back to Node-RED containing details of a specified VueJS Component.

See the Working with Vue Components documentation page for details.

Note that to use this, you must have an instance of the component in your HTML and that must have a ref attributed on it.

Note that you can trigger this automatically (without front-end code) by sending a msg from Node-RED in the form:

{
 "_uib": {
 "requestDetails": true,
 "componentRef": "tabOne",
 "options": {}
 }
}

The returned control message to Node-RED looks like:

{
 "uibuilderCtrl":"vue component details",
 "componentDetails": {
 "ref":"tabOne",
 "tag":"b-tab",
 "props": [
 "id","active","buttonId","disabled","lazy",
 "noBody","tag","title","titleItemClass",
 "titleLinkAttributes","titleLinkClass"
]
 },
 "topic":"uibuilder",
 "from":"client",
 "_socketId":"/extras#mw2GKTo7sLTn9Q-AAAAH",
 "_msgid":"ed7d78ba.ecfe88"
}

showToast Shows a popup message in the UI

Creates a popup message (a “Toast”) that overlays your web UI.

See the Working with Vue Components documentation page for details.

Note that you can trigger this automatically (without front-end code) by sending a msg from Node-RED in the form:

{
 "_uib": {
 // This can actually be anything, if it doesn't exist,
 // the toast will appear in the default location
 "componentRef": "globalNotification",
 // Note that most if not all of these are optional,
 // they correspond to bootstrap-vue's b-toast props
 "options": {
 "title": "This is the <i>title</i>",
 "content": "This is content in addition to the payload",
 "append": true,
 "autoHideDelay": 1500,
 "variant": "info",
 "solid": true,
 "href": "https://bbc.co.uk",
 "toaster": "b-toaster-top-center",
 "noAutoHide": true
 }
 }
}

You can also trigger it from within your front-end code with:

/** Show a pop-over msg
 * @argument {string} Text to show
 * @argument {string|null} Location to show the toast (Vue/Bootstrap-vue only)
 * @argument {object|null} Options that control the toast display
 */
uibuilder.showToast("Hello",null,{"variant": "warn"})

start Start up the front-end library

Start the uibuilderfe library. See the Startup section for details.

This is not automatic because if it were, it would not be possible to use this library with web pages that are not in the root URL folder. For example, if you have a uibuilder instance with a URL set to myui, your source code folder is probably in ~/.node-red/uibuilder/myui/src. HTML files in that folder will be able to start uibuilderfe with a simple uibuilder.start(). But if you create a sub-folder, say utils, any HTML file there will pick up the wrong settings for the websocket connection and will need the override parameters in the start function.

Similarly, it is even possible to serve a uibuilderfe page from a different web server alltogether. In this case you would also need to specify the websocket connection parameters.

uiDebug Conditional debug output (controlled by debug setting)

A convenience method for conditionally outputting debug messages to the browser console.

Two arguments, the first being the type which is one of log, error, info, or dir
The second being the data to show.

If uibuilder.debug is set to false, nothing will be output.

 title: Avoiding build steps for front-end development description: > What ways are there to avoid having a build step (transpile, compile) when developing front-end code? created: 2022-02-15 15:27:05 lastUpdated: 2022-02-15 16:25:08

title: Avoiding build steps for front-end development
description: >
What ways are there to avoid having a build step (transpile, compile) when developing front-end code?
created: 2022-02-15 15:27:05
lastUpdated: 2022-02-15 16:25:08

A build step is simply a way to take things that your browser wont understand directly (like .vue, .jsx files)
and convert them to somthing that they can understand. Along the way, it will try to optimise everything to give the best possible performance.

Why avoid a build step?

Built steps require additional tooling that can be complex to set up correctly. In addition, they require you to remember to rebuild whenever you make a change to your front-end code. In addition, different libraries and packages may be set up differently and therefore require a significant amount of knowledge to make everything work together.

So for simplicity and speed of development, if a build step can be avoided, you may find that beneficial.

How to avoid a build step

The main reasons why a build step may be needed:

	Your front-end code contains statements that the users browser will not understand because the example code you have picked up uses a new version of JavaScript than your browser supports.

	Your chosen front-end framework requires a build in order to work (e.g. Svelte or REACT).

For the first of those, you can try loading the page in one of the browser types your users will have and see what errors you get. Then you may well be able to code those out.

For the second issue, in order to avoid a build step, you will need a version of the front-end library that contains a dynamic build feature. Of the various popular libraries, only VueJS contains such a version as far as I know, see the WIKI links below for more details. However, there are some frameworks that don’t need a build such as AlpineJS [https://alpinejs.dev/], or petite-vue [https://github.com/vuejs/petite-vue].

The final reason for possbibly wanting a build-step is for performance improvements.

If you do need to use a build step, please see the Front-End Build Steps and Tools page.

More Information

VueJS

	Dynamically load .vue files without a build step [uibuilder WIKI] [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/Dynamically-load-.vue-files-without-a-build-step]

	Load Vue components without a build step (modern browsers only) [uibuilder WIKI] [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/Load-Vue-components-without-a-build-step-(modern-browsers-only)]

	Vue (v2) [https://www.npmjs.com/package/vue] - tells you which js file to use

	Skypack CDN: Vue [https://www.skypack.dev/view/vue] - Skypack is a CDN that intelligently loads the correct library remotely and allows you to use ESM import statements making your HTML simpler (no working out what script tags to use).

 title: uibuilder Glossary description: > Terms used in this documentation and their meanings. created: 2019-05-27 17:13:00 lastUpdated: 2023-04-02 17:34:24

title: uibuilder Glossary
description: >
Terms used in this documentation and their meanings.
created: 2019-05-27 17:13:00
lastUpdated: 2023-04-02 17:34:24

Term	Meaning
————	————————————————————
<xxxx>	When a word is shown between angle brackets in the uibuilder documentation, it indicates that this is a variable. (unless it is clearly an HTML tag).
CSS Selector	The standardised code that allows CSS or JavaScript to identify one or more elements on a web page. See MDN CSS Selectors [https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors] for details. e.g. the selector for an HTML element with an id of more would be #more, to select all the elements with a specific class, .classname, all list entries li.
ECMA	Non-profit standards organisation for information and communications systems. Amongst other things, manages the standards for JavaScript - formally known as ECMA Script - in the ECMA-262 standard.
element	Something on a web page. Defined by one or more HTML “tags” such as <div>...</div>.
ESM	AKA “ES Module” (ES=ECMA Script, AKA JavaScript). The Modern module form supported by modern browsers as well as Node.JS. Note that Node.JS also supports CommonJS modules, these are not supported by browsers). Ref.1 [https://hacks.mozilla.org/2018/03/es-modules-a-cartoon-deep-dive/], Ref.2 [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules]
IIFE	“Immediately Invoked Function Expression”. Ref. [https://developer.mozilla.org/en-US/docs/Glossary/IIFE]
instance	In Node-RED, when a node is added to a flow, it is said that this is an instance of a node. Unlike the Node-RED Dashboard, uibuilder can have many instances, each on a separate root url (instanceRoot).In addtion, Node-RED itself can be run multiple times. Each of these is “an instance of Node-RED”.
instanceRoot	The root folder for a specific uibuilder node instance. It will be at <uibRoot>/<url>/.
library	One or more programme files that are utilised by other programs. Often delivered as one or more modules and installed as a package.
low-code	The ability to process information with minimal, reduced computer code.
module	A node.js module contains one or more exported objects. These are then required (for old-style CommonJS modules) or imported for ESM style modules. See the Node.js documentation for details.
package	A collection of scripts, configuration and documentation that is normally installed via thenpm command.A package is defined by a package.json file in the root folder.
parent	Indicates a level up in the HTML page’s hierarcy. For example, an H1 element would typically have a parent of BODY, a TD a parent of TR.
Also indicates a level up in a filing system or URL hierarchy.	
port	Indicates the input and output ports of a Node-RED node (wires attach to these).
Alternatively, a TCP port. They define a communications channel over a TCP protocol. Most commonly seen in browser URLS. Appearingafter the name/IP-address. For example, Node-RED’s default port is 1880 and MQTT’s is 1883.	
root	Indicates the top level of a defined hierarcy.
uibuilder	Extension package for Node-RED. node-red-contrib-uibuilder. Also shorthand for the node template and any node instances installed.
uibRoot	The root folder that contains all settings and front-end user code for all instances of uibuilder.
Default Location:	
If projects not in use: <userDir>/uibuilder/	
If projects in use: <userDir>/projects/<projectName>/uibuilder/However, as of v4, the uibRoot folder can now be moved to wherever you want it.As of v5, this is also where any front-end library packages are installed. Each installed package is added to the web server so that it can be accessed from your web pages.	
url	When used in lower-case, refers to the uibuilder node setting of the same name that defines the URI for the instance.
e.g. if url = ‘test1’ and Node-RED is running on the default port on the local device, the full URL of the default page would be http://localhost:1880/test1/When written in upper-case, it refers to the W3C URL, e.g. what you will see in your browser’s address bar.	
UMD	“Universal Module Definition”. Ref. [https://github.com/umdjs/umd]
userDir	The folder used by Node-RED to store all settings, configuration and flows for a running instance of Node-RED
Default location: <userHome>/.node-red/	
userHome	The operating system folder designated as the “home” folder for the user ID running Node-RED.For Linux, MacOS and in PowerShell on Windows, there is a shortcut for userHome: ~.
vendor	A 3rd party. In this case, refers to any 3rd-party package installed via npm.
wire	In Node-RED, the line that connects nodes together. Indicates the passing of messages from one node to another.
zero-code	The ability to process information without the need to write computer code.

 title: How to use Instance API’s description: > Instance API’s can be defined for each uibuilder node added to your flows. They run on the Node-RED server and are designed to provide server-side compute functions for your data-driven user interfaces. created: 2022-01-17 01:45:24 lastUpdated: 2022-01-17 20:04:17

title: How to use Instance API’s
description: >
Instance API’s can be defined for each uibuilder node added to your flows. They run on the Node-RED server and are
designed to provide server-side compute functions for your data-driven user interfaces.
created: 2022-01-17 01:45:24
lastUpdated: 2022-01-17 20:04:17

Notes:

	WARNING - This feature potentially allows flow authors and front-end developers to create API’s that may access the internals of Node-RED and even the server it is running on. For this reason, you must enable it in settings.js by setting uibuilder.instanceApiAllowed to true. It is turned off by default. It is recommended that you leave it that way unless you know what you are doing.

	It is generally best practice to stick with computing things in Node-RED flows and sending to uibuilder nodes rather than
using separate API’s. However, there may be times when an API will be useful. API endpoints can, of course be called from any front-end
code and so may also be used by other web apps.

Also note that it is best practice when using Node-RED to define API endpoints using http-in/out nodes rather than making use of this facility.

Bottom line is that Instance API’s should be a facility of last resort and used sparingly.

Controlling access to the Instance API features

Edit the settings.js file for the instance of Node-RED and change or add a uibuilder property with a instanceApiAllowed sub-property set to true.

 /** Custom settings for all uibuilder node instances */
 uibuilder: {
 /** Controls whether the uibuilder instance API feature is enabled
 * Off by default since uncontrolled instance api's are a security and
 * operational risk. Use with caution.
 */
 instanceApiAllowed: true,
 },

Creating an API

To create instance API’s, you create an api folder in the uibInstanceRoot folder for your uibuilder node. This will be <uibRoot>/<url>/api. Or, if using default settings for uibuilder and Node-RED and with a uibuilder node having a URL defined as “test1”: ~/.node-red/uibuilder/test1/api/.

Any *.js files in that folder will be loaded by the appropriate node and an attempt will be made to add the contained functions as endpoints to the instance URL.

If your .js file exports a single function, it will be applied to the http(s)://<host>/<url>/api path.

If your .js file exports and object, each property of the object that is a function and matches either an HTTP method (get, put, etc) or use will be applied to the http(s)://<host>/<url>/api/* path. If the object defines a path property, that will be used as the final part of the path instead of the default.

Where multiple API files are provided, each function is added to the appropriate path. Where overlapping functions are provided all functions are executed in order of loading except if the function provides a terminating function such as res.send() and as long as next() is the final function call. Note that it is not guarenteed that multiple files will be loaded in order, this is controlled by node.js and your host operating system, however, they will normally load in a usual sort order.

Making changes to the API

The API .js files are loaded and integrated to the uibuilder instance at flow initialisation time. This means that, if you subsequently make changes, you must either restart node-red or at least use the deploy menu “Restart Flows”.

Order of operation

Because the instance API feature makes use of ExpressJS routing handler functions, the order of definition and the actions of your functions is very important.

You should always keep an eye on the Node-RED log when making changes because that’s where any errors will show up.

Remember that if you have the same verb (method) on the same path, ALL of the functions get fired in order of definition when accessing that URL. Even when
the path is different, you might have a path like /api/:something and in a different file, a path like /api/fred, these will both be triggered if you go to the
/api/fred URL.

Also remember that if you use an ExpressJS function that sends the HTTP headers, what I’ve termed a terminating command, you cannot then use another function
that also does the same thing, that will give you an error (though the first function will already have worked). So if, in one file you had a get function
that does res.send('hello'), you cannot then have a second file with the same path and a get function that does res.json({"message": "Hello"}) since both
send headers a completion code and some data.

Allowed function names

The instance API feature will only process certain property names and will ignore all others.

	path - must be a string that will be used as the API path added to <uibInstanceURL>/.

	get, put, post, head, delete, connect, options, trace, patch - these are the 9 most common HTTP verbs.

	use - used to apply the function as ExpressJS middleware.

	all - will apply the function to all methods.

	apiSetup - will not be used as an ExpressJS router, it will be run at setup time and will pass the node and uib master variable (which also contains a reference to the RED object) into the function. Those references can be assigned to constants accessible to the other functions. See the examples below for details.

Note that the functions do not get direct access to the path normally used in the ExpressJS router.get() etc calls. The path will either be <uibInstanceURL>/api/* (default) or the path defined in the export added to <uibInstanceURL>/. THe functions match the function (2nd or 3rd parameter to the router.<method>() call) passed through to the router function.

API function definitions

The functions in your API files must be valid ExpressJS route/middleware functions.

They will receive either 2 or 3 parameters. res, req and next in that order. Check the ExpressJS documentation for details.

If the function does not have a terminating function such as res.send(), it should end with a next() function call otherwise the page may never be
sent back to the client browser.

Please read the ExpressJS documentation for details about routing handler functions [https://expressjs.com/en/guide/routing.html]. Also the ExpressJS v4 Router API details [https://expressjs.com/en/4x/api.html#router].

Optional Setup Function (optional access to node and uib objects)

Errors

The functions in your API files must be valid ExpressJS route/middleware functions. If they are not, it is highly likely that serious errors will occur and it
it possible that Node-RED will crash. Though crashes should be reported as bugs to the uibuilder GitHub issues log so that they can be eliminated.

Examples

These examples use the following assumed settings:

	url: test1

	host & port: http://1.2.3.4:1880/

	userDir: The default ~/.node-red/

	uibRoot: The default <userDir>/uibuilder/

	Main API file name: api1.js

	2nd API file name: api2.js

Single Function

TBC

Multiple functions with no path property

TBC

Multiple functions with a path property

This example would provide a range of API URL’s: http://1.2.3.4:1880/test1/api/xxx, ``http://1.2.3.4:1880/test1/api/yyyand indeed any valid name after theapi/`. This is using the ExpressJS path params option.

api1.js

/** Example uibuilder instance API file with multiple methods
 * Each method will be applied to `<uibInstanceURL>/api/:something` path
 * You have to reload Node-RED if you change this file.
 * It is best to use named functions as shown because it makes debugging URL paths easier when using the uibindex page.
 * See the ExpressJS documentation for details regarding these functions and the method names, parameter handling, etc.
 */
'use strict'

module.exports = {
 // Must be a valid ExpressJS URI path. It will be appended to the instance URL.
 path: '/api/one/:something',

 // route name='use', path='/api/', route=''
 use: function use(req, res, next) {
 console.log('>> api.js USE >>', req.params)
 // No terminating function in this middleware and so `next()` is REQUIRED
 next()
 },

 // route name='bound dispach', path='/api/', route='get:/^\/?$/i'
 get: function get(req, res, next) {
 // This is a terminating function because it returns data and a completion code back to the browser
 res.send('Woo Hoo')
 // But this is still run
 console.log('>> api.js GET >>', req.params)
 // However, this is not really needed - but it doesn't hurt to include it for safety.
 next()
 },

}

A second API file with duplicate functions but a different path property

This example, will load the same use and get functions from the previous example onto a different path.
In this case onto http://1.2.3.4:1880/test1/api.

Assuming the api1.js file from the previous example.

api2.js

const api1 = require('./api')

// Replace the path only
api1.path = '/api'

module.exports = api1

Using the apiSetup function

/** Example uibuilder instance API file with custom apiSetup()
 */
'use strict'

let uibNode, uibMaster

module.exports = {
 // Must be a valid ExpressJS URI path. It will be appended to the instance URL.
 path: '/api/three/',

 // This captures the node object and the uib master object
 apiSetup(node, uib) {
 //console.log('>> apiSetup >>', node.url, '>> node >>', node, '>> uib >>', uib, '<<<<')
 uibNode = node
 uibMaster = uib
 },

 // This displays some info from the captured objects & perhaps shows how dangerous
 // this could be if used incautiously.
 // route name='bound dispach', path='/api/three/', route='get:/^\/?$/i'
 get: function get(req, res, next) {
 let contexts = Object.keys(uibMaster.RED.settings.contextStorage)
 contexts = contexts.join(', ')

 res.send(
 `
 <div>
 Node ID: ${uibNode.id},

 uibuilder root path: ${uibMaster.nodeRoot},

 Node-RED context stores: [${contexts}]
 </div>
 <h2>Node-RED Settings</h2>
 <pre><code>${JSON.stringify(uibMaster.RED.settings)}</code></pre>
 `
)

 console.log('>> api3.js GET >>', req.params)
 next()
 },

}

 title: Using the List node description: > Describes how and why to use the uib-list node and how to create a list in your web page from an array. created: 2022-06-28 lastUpdated: 2022-06-28 15:53:13

title: Using the List node
description: >
Describes how and why to use the uib-list node and how to create a list in your web page from an array.
created: 2022-06-28
lastUpdated: 2022-06-28 15:53:13

The uib-list node was added in uibuilder v5.1 as an experimental version.

It provides an easy, no-code method from within your flows of creating an HTML list in your web pages based on a simple array or JavaScript object.

It uses the new configuration-driven UI capabilities of the new client library (it doesn’t work with the old uibuilderfe.js client).

Using the list node

Make sure you have at least one uibuilder node set up and deployed.

Add a uib-list node with an input flow. Connect it to the uibuilder node and configure as shown in the next section.

Then a suitable input message can be sent.

A simple message might have a JSON payload of ["LI One", "LI Two", "LI Three", "LI Four"] for example which would produce a list containing 3 lines (if you selected an OL or UL list).

For a DL list, the minimal data might look like [["Entry 1","Definition 1"],["Entry 2","Definition 2"],["Entry 3","Definition 3"],["Entry 4","Definition 4"]] (an array of array’s), or [{"Entry 1":"Definition 1"},{"Entry 2":"Definition 2"},{"Entry 3":"Definition 3"},{"Entry 4":"Definition 4"}] (an array of objects). That creates an 8 line output in the UI.

Obviously, the exact look and feel and number of output lines is also dependent on what CSS styling you use.

Configuration

	Select the appropriate parent uibuilder node to send to.

	Provide an HTML element ID. This needs to be unique on your target web page(s) otherwise you may get hard to analyse issues.

	Select the type of list to create:

	Unordered (ul) - a bullet list

	Ordered (ol) - a numbered list

	Definition (dl) - a term/definition list

	Provide a parent CSS selector

E.g. “div#myid” or just “#myid” would attach the list as a child of a DIV tag with an id of myid.
“p.myclass” would attach the list as a child of a P tag that has a class including myclass.

If a parent is not specified, the list will be added as a new child of the body tag. (e.g. the end of the UI)

Optional output message

By selecting to “Output instead of send?”, the configuration is not send to connected clients but instead is output as a msg.

That msg contains a msg._ui property containing the UI configuration object. Here is a simple example.

Given a msg.payload input of:

[
 "LI One",
 "LI Two",
 "LI Three",
 "LI Four"
]

The output msg looks like:

{
 "_msgid": "568941796a27db2c",
 "topic": "auto-create-list",
 "_uib": {
 "originator": "ee38039276e446bb"
 },
 "_ui": [
 {
 "method": "remove",
 "components": ["#li1"]
 },
 {
 "method": "add",
 "components": [
 {
 "type": "ol",
 "id": "li1",
 "attributes": {},
 "components": [
 { "type":"li", "slot": "LI One" },
 { "type":"li", "slot": "LI Two" },
 { "type":"li", "slot": "LI Three" },
 { "type":"li", "slot": "LI Four" }
],
 "parent": "#aparent"
 }
]
 }
]
}

Troubleshooting

If you get some output in your UI that looks like THREE,C,[object Object], you have accidentally sent an object that is too complex for the node to render. If this becomes an ongoing issue, maybe pester me to add support for deeper object resolution.

List appears on all pages in a multi-page uibuilder configuration (multiple pages/folders under a single uibuilder node). Currently, the only way to prevent this is to use the output message option of the node to get the configuration object that you can use in your own flows. The originating page-name is now available in the “client connect” control message from uibuilder but this is not yet incorporated into this node. It is on the backlog for a future update.

 Basic authentication

Basic authentication

When web server asks for an auth, the browser gets a HTTP 401 code and prompts the user for username and password.

If the correct details provided, the server returns the expected content. The client does not get any authorisation headers. Add a custom header with the $remote_user NGINX variable if you want to pass the logged in username to the client.

Otherwise the 401 Authorization Required page is returned.

https://nginx.org/en/docs/http/ngx_http_auth_basic_module.html

Example config

 location /authbasic/ {
 # sudo htpasswd -c /etc/nginx/.htpasswd me # thisisme
 satisfy all;
 auth_basic "Auth Basic"; # relm, any text you like
 auth_basic_user_file /etc/nginx/.htpasswd;
 add_header X-JK-Proxy "Basic Auth Test";
 add_header X-JK-User $remote_user; # Returns the logged in username

 # proxy_set_header Authorization ""; # If you don't want the upstream to receive the auth
 proxy_pass https://localhost:1880/authbasic/;
 }

Digest authentication

Not considered secure enough for inclusion in the default NGINX build.

https://www.nginx.com/resources/wiki/modules/auth_digest/

Sub-request authentication

 title: NGINX Example Config description: > An example of a reasonably secure configuration for Node-RED and uibuilder. created: 2022-02-21 13:05:38 lastUpdated: 2022-02-21 13:05:42

title: NGINX Example Config
description: >
An example of a reasonably secure configuration for Node-RED and uibuilder.
created: 2022-02-21 13:05:38
lastUpdated: 2022-02-21 13:05:42

!> Status: Incomplete

Please read the Securing uib web apps and Securing apps using NGINX pages before trying this configuration.

!> This is not offered with any kind of guarantee or warrantee that it will be secure or even whether it will work. It merely offers some suggestions that you may wish to look at.

This example assumes you are running NGINX from a direct installation (as per the Installing nginx [https://nginx.org/en/docs/install.html] guide). Not as a Docker install. It also assumes you are running on a version of Linux with systemd.

How to configure

On Linux, with a direct install of NGINX Open Source edition, you should be able to find any configuration files in the /etc/nginx/conf.d folder. By default, the files and folder are owned by the root user.

Take note of the default.conf file, you may wish to comment out part or all of that. The Example below assumes that you have commented out the default entries or deleted the file.

The example config below should be put in another file such as red.conf in the same folder.

Note also that there are some default static pages in the /usr/share/nginx/html/ folder. It is recommended that you edit these. At least remove everything from the index.html and 50x.html page that Identifies NGINX and anything to do with who the server belongs to then leave that page as the default so that it will be presented if a route hasn’t been covered by something more specific. You may also want to add a default 404.html page. See the default conf to add a 404 default, you could choose to return the default index.html page for anything not found.

If changes are made to any of the conf files, you will need to restart the server using the command sudo nginx -s reload.

nginx.conf file

Unlike the example files below, this lives in /usr/share/nginx/. You should edit this file if you want to load additional modules to NGINX.

Example default.conf file

read more here http://tautt.com/best-nginx-configuration-for-security/

don't send the nginx version number in error pages and Server header
server_tokens off;

don't allow the browser to render the page inside an frame or iframe and avoid clickjacking http://en.wikipedia.org/wiki/Clickjacking
if you need to allow [i]frames, you can use SAMEORIGIN or even set an uri with ALLOW-FROM uri https://developer.mozilla.org/en-US/docs/HTTP/X-Frame-Options
add_header X-Frame-Options SAMEORIGIN;

when serving user-supplied content, include a X-Content-Type-Options: nosniff header along with the Content-Type: header,
to disable content-type sniffing on some browsers.
https://www.owasp.org/index.php/List_of_useful_HTTP_headers
currently suppoorted in IE > 8 http://blogs.msdn.com/b/ie/archive/2008/09/02/ie8-security-part-vi-beta-2-update.aspx
http://msdn.microsoft.com/en-us/library/ie/gg622941(v=vs.85).aspx
'soon' on Firefox https://bugzilla.mozilla.org/show_bug.cgi?id=471020
add_header X-Content-Type-Options nosniff;

This header enables the Cross-site scripting (XSS) filter built into most recent web browsers.
It's usually enabled by default anyway, so the role of this header is to re-enable the filter for
this particular website if it was disabled by the user.
https://www.owasp.org/index.php/List_of_useful_HTTP_headers
add_header X-XSS-Protection "1; mode=block";

with Content Security Policy (CSP) enabled(and a browser that supports it(http://caniuse.com/#feat=contentsecuritypolicy),
you can tell the browser that it can only download content from the domains you explicitly allow
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
https://www.owasp.org/index.php/Content_Security_Policy
I need to change our application code so we can increase security by disabling 'unsafe-inline' 'unsafe-eval'
directives for css and js(if you have inline css or js, you will need to keep it too).
more: http://www.html5rocks.com/en/tutorials/security/content-security-policy/#inline-code-considered-harmful
add_header Content-Security-Policy "default-src 'self'; script-src 'self' 'unsafe-inline' 'unsafe-eval' https://ssl.google-analytics.com https://assets.zendesk.com https://connect.facebook.net; img-src 'self' https://ssl.google-analytics.com https://s-static.ak.facebook.com https://assets.zendesk.com; style-src 'self' 'unsafe-inline' https://fonts.googleapis.com https://assets.zendesk.com; font-src 'self' https://themes.googleusercontent.com; frame-src https://assets.zendesk.com https://www.facebook.com https://s-static.ak.facebook.com https://tautt.zendesk.com; object-src 'none'";

Default server entry
server {

 listen 80;
 listen [::]:80;
 server_name localhost;

 # You should always have an access log for security and audit
 access_log /var/log/nginx/host.access.log main;

 location / {
 root /usr/share/nginx/html;
 index index.html index.htm;
 }

 error_page 404 /404.html;

 # redirect server error pages to the static page /50x.html
 #
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root /usr/share/nginx/html;
 }

 # proxy the PHP scripts to Apache listening on 127.0.0.1:80
 #
 #location ~ \.php$ {
 # proxy_pass http://127.0.0.1;
 #}

 # pass the PHP scripts to FastCGI server listening on 127.0.0.1:9000
 #
 #location ~ \.php$ {
 # root html;
 # fastcgi_pass 127.0.0.1:9000;
 # fastcgi_index index.php;
 # fastcgi_param SCRIPT_FILENAME /scripts$fastcgi_script_name;
 # include fastcgi_params;

 #}

 # deny access to .htaccess files, if Apache's document root
 # concurs with nginx's one
 #
 #location ~ /\.ht {
 # deny all;
 #}
}

Example Node-RED & uibuilder config file red.conf

 Base data, folders, and files

Base data, folders, and files

Folder: <userDir>/

This is usually ~/.node-red/ and is the main folder containing the settings and node packages for Node-RED.

Prior to v5 of uibuilder, this was used to install uibuilder front-end packages. As of v5+, this is no longer the case.

Folder: <uibRoot>/

Needs a package.json file and will contain a node_modules folder if any packages are installed for all instances of uibuilder (the default location).

Folder: <uibRoot>/<url>/

This is the local configuration folder for a uibuilder node instance (as defined by the node’s url setting).

Needs a package.json file but currently, packages installed here are only used for processing the front-end code. Normally, you would not see any dependencies, only dev-dependencies for example Webpack.

System startup

When the uibuilder module is loaded, it immediately sets up the required web server routes. This includes the front-end library (vendor) routes for any packages installed to uibRoot.

uibuilder.js[Uib->runtimeSetup]->web.js[setup->_webSetup->serveVendorPackages, serveVendorSocketIo]

Editor

Open panel for a uibuilder node instance

On opening a uibuilder node configuration panel in the editor:

uibuilder.html[oneditprepare->packageList]->admin-api-v2.js[uibvendorpackages]->web.js[serveVendorPackages]

Sets the 'packages' variable.

On click on “Libraries” tab:

uibuilder.js[tabLibraries->]

Add a new package

Remove a package

Internal Variables

You don’t need to know these unless you are working on the uibuilder code.

uibuilder.js

packageMgt.uibPackageJson

Set by the getUibRootPackageJson method in nodes/libs/package-mgt.js.
It contains the contents of the <uibRoot>/package.json file.

The important properties are:

	dependencies - the list of installed packages that are served up by uibuilder

	uibuilder - Metadata and config data for the uibuilder module.

Specifically uibuilder.packages which contains the package metadata:

{
 "vue": {
 "installFolder": "/src/uibRoot/node_modules/vue",
 "installedVersion": "2.6.14",
 "estimatedEntryPoint": "dist/vue.js",
 "homepage": "https://github.com/vuejs/vue#readme",
 "packageUrl": "/vue",
 "url": "../uibuilder/vendor/vue/dist/vue.js",
 "spec": "^2.6.14"
 },

}

uibuilder.html

packages

Set when panel is opened. See Editor section above.

A copy of the uibuilder.packages data shown above.

 title: Pre-defined uibuilder messages description: > Documents the different types of uibuilder messages between a Node-RED uibuilder node and a uibuilder front-end. created: 2020-09-24 18:14:00 lastUpdated: 2022-06-18 17:17:42

title: Pre-defined uibuilder messages
description: >
Documents the different types of uibuilder messages between a Node-RED uibuilder node and a uibuilder front-end.
created: 2020-09-24 18:14:00
lastUpdated: 2022-06-18 17:17:42

	Message types

	Control message overview

	Standard msg properties used by uibuilder

	msg._ui {Object} (uibuilder v5.1+)

	msg._uib {Object} (uibuilder v3+)

	msg.uibDomEvent {Object} (uibuilder v3.2+, PARTIALLY REPLACED WITH msg._ui in v5.1)

	msg.script {String} (PARTIALLY DEPRECATED IN v5.1)

	msg.style {String} (PARTIALLY DEPRECATED IN v5.1)

	msg._auth {Object} (~~uibuilder v3+~~ DEPRECATED IN v5.0)

	Messages out of uibuilder’s 2nd output port

	On client (re)connection

	On client disconnection

	Messages from Node-RED uibuilder node to the front-end (browser)

	Client (re)Connection (Control Message)

	Errors

	UI Notification [Toast] (Control Message, PARTIALLY DEPRECATED in v5.1)

	Simple version

	More complex example

	Browser client reload page

	Msg Schema

	Messages From the front-end (browser) to the Node-RED uibuilder node

	Client Ready for Content (Control Message)

	DOM Event (standard message from eventSend function. PARTIALLY DEPRECATED IN v5.1)

	Messages From either Node-RED or the client

	Clear Cache (Control Message)

Message types

uibuilder has three general types of pre-defined message.

	Input UI configuration messages

Input messages containing a msg._ui property are pre-processed by the client’s UI building functions and will “hydrate” the configuration data into HTML that is inserted into the browsers DOM (e.g. it updates the UI).

Such messages do not trigger the onChange('msg', ...) or onTopic(topic, ...) functions.

	Input command messages

Input messages containing a msg._uib property are pre-processed by the client’s command handler. This lets you control the client and change its settings from Node-RED.

Such messages do not trigger the onChange('msg', ...) or onTopic(topic, ...) functions.

	Output control messages

A number of standard control messages may be output from the lower output port of the uibuilder node. These may be informational, control caching, notify of errors

It also has some standard message property names that are used throughout. These are described in the next section below.

Control message overview

This is a list of the possible control messages. They are described in more detail in the following sections of this page.

Created by the uibuilder node:

	“client connect” - When a new client connects or an existing client reloads the page or reconnects after a temporary disconnect. Contains a counter that allows discrimination between a new connection and a reconnection.

	“client disconnect” - When an existing client disconnects or goes away.

	“socket error” - when Socket.IO receives information that a client connection is in error.

	“shutdown” - from server to client when Node-RED is shutting down. (Not well tested).

Send by the uibuilder client library to the uibuilder node:

	“cache control” - the client manually instructing a connected uib-cache node to either clear or replay its cache. Clear will impact all connected clients. Replay will only update the requestor.

	“client log message” - a client can send a log message that is processed by the server. Initial implementation in v6.1, will be enhanced in future versions.

	“visibility” - the client informs the server when the currently loaded page becomes visible or hidden.

Standard msg properties used by uibuilder

msg._ui {Object} (uibuilder v5.1+)

The contents of this property are used by the uibuilder front-end client library (only by the new ES Module version uibuiler.esm.js at the time of writing) to dynamically create or change a web page UI.

The property name _ui was deliberately chosen because it does not need to be uibuilder specific, other nodes might also use the same feature as might other front-end libraries.

The dynamic ui features are very powerful but extremely simple to use and they work (via the uibuilder client library) with any or no framework in the standard uibuilder style.

You can use the feature with standard HTML tags or tags from any other framework and from web components.

Please see the documentation for the new client library for details.

msg._uib {Object} (uibuilder v3+)

Used by the Browser client reload page, showToast and showComponentDetails functions and their equivalent messages from Node-RED.

Should be used in the future for any other standardised uibuilder-specific interactions with the client libraries.

msg.uibDomEvent {Object} (uibuilder v3.2+, PARTIALLY REPLACED WITH msg._ui in v5.1)

Used by the eventSend function.

Replaced with the new msg._ui features in v5.1 with the ESM client library. The new version provides much more information back from the client browser. It is also standardised with the rest of the config-driven UI features.

msg.script {String} (PARTIALLY DEPRECATED IN v5.1)

Only used if the “Scripts?” flag is set in uibuilder’s Advanced Settings.

Text must be valid JavaScript and will be dynamically added to the client page DOM.

WARNING No checking is done and this could be quite dangerous.

From v5.1, if using the new ESM client library, this property is no longer respected. Please use the new msg._ui features with the load mode.

msg.style {String} (PARTIALLY DEPRECATED IN v5.1)

Only used if the “Styles?” flag is set in uibuilder’s Advanced Settings.

Text must be valid CSS and will be dynamically added to the client page DOM.

WARNING No checking is done and this could be quite dangerous.

From v5.1, if using the new ESM client library, this property is no longer respected. Please use the new msg._ui features with the load mode.

msg._auth {Object} (~~uibuilder v3+~~ DEPRECATED IN v5.0)

The intent of this property is to have a unified data exchange between Node-RED and the client browser. It should facilitate authentication and authorisation activities.

The built-in uibuilder security features were removed in v5 since they were seriously hampering development without resolving to a stable, workable solution.

It is possible and even likely that this will re-appear in a future release.

Messages out of uibuilder’s 2nd output port

These messages are all control messages. They let your flows know whether a client as (re)connected, disconnected, had an error, etc. They are used to control cache replays and clears.

On client (re)connection

Note that a similar version of this same msg goes to the client as the initial connection from the server

{
 "uibuilderCtrl": "client connect", // control message type
 "from": "server", // NR->Client
 "_socketId": "/extras#sct0MeMrdeS5lwc0AAAB", // Socket.IO client id (changes on reconnection)
 "_msgid": "8d4307ce.d5e428", // Node-RED internal msg id

 // These are new as of v5.1
 "clientId":"nqfzLy4SXju3hPRVD3UMq", // The stable client ID
 "ip":"::ffff:127.0.0.1", // The client IP address
 "connections":0, // How many times the client connected since the last page load
 "srcPage": "pagename", // To allow page-specific cache and processing

 // DEPRECATED properties
 //"cacheControl": "REPLAY", // Redundant - REMOVED as of v5.1
}

On client disconnection

May be from the client reloading the page or some other reason.

Note that the disconnction message may be output AFTER the reconnection message. This is down to Socket.io and not under our control.

{
 "uibuilderCtrl":"client disconnect",
 "reason":"transport close",
 "_socketId":"__AhN_nRVgxMSdeHAAAC",
 "from":"server",
 "ip":"::ffff:127.0.0.1",
 "clientId":"nqfzLy4SXju3hPRVD3UMq",
 "_msgid":"d97ca68d19541dac"
}

Messages from Node-RED uibuilder node to the front-end (browser)

In addition to these messages, see also the VueJS component handling page.

Client (re)Connection (Control Message)

Is sent from Node-RED by uibuilder to the client whenever a new client connects or
when an existing client re-connects (by reloading their page).

Note that, as of uibuilder v5.1, the REPLAY cacheControl is no longer included in the “client connect” message. The uib-cache node has been updated accordingly. The replay message still works but is removed from this since other properties needed to be added.

Note also that this is very similar to the message that is output from uibuider’s output port #2 on connection. This is the version that goes to the client though and so has slightly different properties.

{
 "uibuilderCtrl": "client connect", // control message type
 "serverTimestamp": "2020-09-24T12:56:13.125Z", // Can be used in client to work out their timezone or at least time offset from the server
 "from": "server", // NR->Client
 "_socketId": "/extras#sct0MeMrdeS5lwc0AAAB", // ID of client (from Socket.IO)
 "_msgid": "8d4307ce.d5e428", // Node-RED internal msg id

 // These are new as of v5.1
 "version":"5.0.3-dev", // The Server version

 // DEPRECATED properties
 //"cacheControl": "REPLAY", // Redundant - REMOVED as of v5.1
 //"security": false, // No longer in use - REMOVED as of v5.0
}

Errors

On an untrapped Socket.IO error, uibuilder attempts to let the client(s) know that something has happened. uibuilder sends a
control msg to the client(s) such as the following example.

{
 "uibuilderCtrl": "socket error",
 "error": "Oops! Some kind of error happened",
 "_socketId": "I02mCJZ1oKGGYiK8AAAu",
 "from": "server"
}

If an error is raised in <uibRoot>/.config/sioUse.js for example, this kind of message might be sent. See the default template for that file for an example.

See the Developer documentation for socket.js for more information.

UI Notification [Toast] (Control Message, PARTIALLY DEPRECATED in v5.1)

Sending this message (uibuilder v3+) to the client will pop-over a dynamic message to the user in the browser. No code is required at the front-end.

Prior to v5, this required VueJS and bootstrap-vue. If these are available, then bootstrap-vue’s toast component will be used.

From v5, this works without VueJS as well. Just make sure that you include the default uibuilder stylesheet by putting @import url("./uib-styles.css"); at the start of your index.css file. The toast will appear overlaid on all other content. Clicking on a notification will clear that one. Clicking on the background will clear all notifications.

!> From v5.1 but only if using the new ESM version of the client library, this is replaced by the standardised msg._ui features detailed elsewhere.

Simple version

This would send a notification to all connected clients. May be injected to a uibuilder node.

{
 "_uib": { // Required. VueJS Component data
 "componentRef": "globalNotification", // Required.
 },
 "payload": "This is a notification from Node-RED!", // Optional. Will be added to the notification message (content). May be HTML.
}

More complex example

Note: BV means bootstrap-vue

{
 "_uib": { // Required. VueJS Component data
 "componentRef": "globalNotification", // Required.
 // options object is optional. Options are passed directly to the bootstra-vue `<toast>` component.
 // These are examples only.
 "options": { // all of the entries are optional.
 // Creates a title section above the content that is highlighted
 "title": "This is the <i>title</i>",
 // Main message content (appears after any payload). May contain HTML.
 "content": "This is content in addition to the payload",
 // Default false. If true stops auto-Hide.
 // Click on the close button (BV) to remove the toast.
 // For non-BV, click on box to clear it or on background to clear all.
 "noAutoHide": true,
 // 5000 by default, how long the message stays on-screen. Hover over message to pause countdown.
 "autoHideDelay": 1500,
 // Optional colour variant. error, warning, info, primary, secondary, success
 "variant": "info",
 // Default display is semi-transparent (BV only), set this to true to make the message solid colour.
 "solid": true,

 // BV Only. New message appears above old by default (false), change to true to add to the bottom instead.
 "append": true,
 // BV Only. If present, the whole message is turned into a link. Click takes the client to the URL.
 "href": "https://bbc.co.uk",
 // BV Only. Controls where on the page the toast appears. Several standard locations are available.
 // default is top-right. Custom positions can be set by including a <toaster> element in your HTML.
 "toaster": "b-toaster-top-center",
 // For BV, more options are available. @see https://bootstrap-vue.org/docs/components/toast
 },
 },

 // Optional. Will be added to the notification message (content). May be HTML.
 "payload": "<any>",

 // Optional. ID of client (from Socket.IO) - msg would only be sent to this client.
 "_socketId": "/extras#sct0MeMrdeS5lwc0AAAB",
}

Browser client reload page

Sending this message (uibuilder v3.3+) to the client will cause the client to reload the page.

Msg Schema

{
 "_uib": { // Required. VueJS Component data
 "reload": true, // Required.
 }
 // Everything else is ignored
}

Note that, as of v5.1 with the ESM client library, this can also be achieved using the standardised msg._ui features.

Messages From the front-end (browser) to the Node-RED uibuilder node

Note that, if responding to a control msg (sending back to uibuilder’s input), you must remove the uibuilderCtrl property otherwise, uibuilder will refuse to send the msg (to prevent msg loops).

Client Ready for Content (Control Message)

Is send by the client library (uibuilderfe) to Node-RED whenever the client connects by loading or reloading the page.

Any message that contains "cacheControl": "REPLAY" and is linked back to your cache node should trigger that node to replay all of the saved cache
to the uibuilder node. Make sure you include the _socketId if you want that replay to only go to a specific connected client.

{
 "uibuilderCtrl": "ready for content", // control message type
 "cacheControl": "REPLAY", // Cache control request type: REPLAY or CLEAR
 "from": "client", // Client->NR
 "_socketId": "/extras#sct0MeMrdeS5lwc0AAAB", // Socket.IO ID of client (changes on reconnect)
}

DOM Event (standard message from eventSend function. PARTIALLY DEPRECATED IN v5.1)

!> Note that from v5.1 with the ESM client library, this is replaced by the standardised msg._ui features.

Is sent whenever the eventSend function is called.

Example output:

{
 "topic": "mytopic", // Optional. Repeats the topic from the last inbound msg if it exists

 "uibDomEvent": {
 // The HTML id attribute where the event occured
 // If no id present, will try to use `name`, if
 // that isn't present, will use the first 25 chars of the inner text.
 "sourceId": "mytagid",
 // The DOM event type
 "event": "click",
 },

 // Each `data-xxxx` attribute in the HTML is added as a property
 // - this may be an empty Object if no data attributes defined
 "payload": { ... },
}

Messages From either Node-RED or the client

Clear Cache (Control Message)

This can be sent from anywhere. You will need to link the message to your caching node (e.g. a function node that handles caching).

Note that sending this into a uibuilder node, the msg will be dropped by uibuilder (to prevent control loops). Send it to your cache node.

{
 "uibuilderCtrl": "clear cache", // Required. control message type
 "cacheControl": "CLEAR", // Required. Cache control request type: REPLAY or CLEAR
}

 title: Regression tests for uibuilder description: > A summary of some of the key testing available for uibuilder. created: 2019-05-25 09:33:00 lastUpdated: 2023-03-06 12:36:02 author: Julian Knight (Totally Information)

title: Regression tests for uibuilder
description: >
A summary of some of the key testing available for uibuilder.
created: 2019-05-25 09:33:00
lastUpdated: 2023-03-06 12:36:02
author: Julian Knight (Totally Information)

Here are some simple, manual tests that try to ensure that uibuilder is working as expected.

In addition to the below, the templates and zero-code example flows represent tests for each template and the uib-element and uib-update nodes.

Quick test of basic features

The default configuration of a new uibuilder node gives a single page that uses VueJS & bootstrap-vue. That page shows incoming/outgoing messages from/to the Node-RED server, keeps count, shows some flags and contains a counter button that will send a message back to Node-RED.

	Check that initial load triggers a control message from the server and a corresponding control message back to the server.

	Check that pressing the button sends a message to the server.

	Check that a msg flowing into the uibuilder node is seen in the front-end.

	Also test that a msg from Node-RED that includes a specific msg._socketId only goes to the correct client.

	a msg sent without the msg._socketId property goes to all clients.

	index.html and other files in <uibRoot>/<url>/src should be accessible to client on URL ./

	Index.html in <uibRoot>/<url>/dest should override index.html in the src folder.

	Files in <uibRoot>/common/ should be available to the client on the URL ./common

Notes: <uibRoot> = ~/.node-red/uibuilder on a standard installation. <uibRoot> = ~/.node-red/projects/<projectName>/uibuilder/ on a standard install with projects active. ~ = user home folder. ~/.node-red/ is referred to as the userDir and can be changed on Node-RED startup. <url> refers to the url setting in the admin ui for uibuilder nodes.

Initial control msg from server to client on connect:

{"uibuilderCtrl":"client connect","cacheControl":"REPLAY","_socketId":"/nr/uib#W4bY7aTZ6WC1M_9MAAAG","from":"server","serverTimestamp":"2019-05-26T13:01:19.997Z","_msgid":"211cf057.572ef"}

Initial control msg reply from client to server after connect:

{"uibuilderCtrl":"ready for content","cacheControl":"REPLAY","from":"client","_socketId":"/nr/uib#W4bY7aTZ6WC1M_9MAAAG","_msgid":"320a6821.6a6208"}

Control message from server on client disconnection:

{"uibuilderCtrl":"client disconnect","reason":"transport close","_socketId":"/nr/uib#W4bY7aTZ6WC1M_9MAAAG","from":"server","_msgid":"672af72f.170d18"}

Admin UI: Package Handling

Load the admin ui for any uibuilder node. Click on the “Manage Front End Libraries” button.

	Add a new package

	Remove a package

	Add then remove the same package

Vendor paths correct after deploy

Load the index API page, make a change in the admin ui, deploy, reload index API page.

	“uibuilder Vendor ExpressJS Paths” section of the index should be correct for the installed vendor packages.

Pages in sub-paths load correctly

Create a page in a sub-path, adjust the URL’s accordingly. Alter the JS, change uibuilder.start() to uibuilder.start(<namespace>, <ioPath>).

	Page should load all resources correctly

	socket.io communications should start successfully.

 title: uibuilder Roadmap description: > This page outlines the future direction of uibuilder. Including specific things that will almost certainly happen as well as more speculative ideas. created: 2022-02-01 11:15:27 lastUpdated: 2023-04-11 18:04:53

title: uibuilder Roadmap
description: >
This page outlines the future direction of uibuilder. Including specific things that will almost certainly happen as well as more speculative ideas.
created: 2022-02-01 11:15:27
lastUpdated: 2023-04-11 18:04:53

Is there something in this list you would like to see prioritised? Is there something you could help with? Please get in touch via the Node-RED forum [https://discourse.nodered.org/]. Alternatively, you can start a discussion on GitHub [https://github.com/TotallyInformation/node-red-contrib-uibuilder/discussions] or raise a GitHub issue [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues].

Please note that I no longer have the time to monitor the #uibuilder channel in the Node-RED slack.

Aims and the future

uibuilder aims and overall direction

THIS NEEDS AN UPDATE

The general direction of uibuilder (or associated modules) that I would like to see includes:

	STARTED, see node-red-experimental-nodes [https://github.com/TotallyInformation/node-red-experimental-nodes]. A set of extension front-end components with well defined (reusable) data schemas for doing common UI tasks. The defined data schema’s would cover both the component content and configuration data so that both could be sent from Node-RED via uibuilder and any return data structures would similarly be well defined.

	STARTED, see the new front-end library in the above module. A capability to have configuration-driven (data-driven) UI’s. Creating a framework for describing a UI and translating to actual code.

	A UI designer allowing users without HTML/CSS/JS skills to create reasonable web apps without code.

Information also needs to be provided to enable people to build security, identity, authentication and authorisation. As at v5, the experimental security features in uibuilder have been removed as they were never complete and were holding back other development. Security of web apps is best done using a dedicated service anyway. Typically a reverse-proxy using a web server can be used to provided integrated security and authentication.

Focus for the near future

THIS NEEDS AN UPDATE

The following is the immediate direction. These are not likely to be incuded in v5.0.0 but are likely to be added to v5.1 or maybe a little later.

Current focus (beyond what has already been developed) is on:

	Continuing to improve the zero-code features.

	Ensuring that control is easy from both front-end code and Node-RED flows. Creating visible elements and updating them should be easy and consistent.

	Ensuring the information from the UI and the uibuilder client is easy to recover and use either in front-end code or in Node-RED.

	Add further options for efficiency - such as easy ways to save updated HTML such that it will be used on new connections and reloads.

	Continuing to improve the documentation. Updating details and changes, adding how-to’s, moving some things from the WIKI. Improving language consistency.

	Creating more YouTube videos.

Next immediate focus will be on:

	Enabling instance npm scripts to be run from the Editor.

Longer term focus

THIS NEEDS AN UPDATE

	Creating usable components that have standardised data interfaces. So that other developers can produce similar outputs with different frameworks but the data that is exchanged with Node-RED remains the same. These components should make things easy that flow designers might typically want to do (notifications, forms, charts, tables, drag-and-drop, etc.)

	Creating a visual layout generator to bridge the gap between uibuilder and Dashboard. Ideally this would be non-framework specific but this seems a very unlikely goal to hit. Would be happy for this to either use web components, Svelte or VueJS.

	Add option to auto-install npm dependencies on change of Template (and possibly run an install script).

	Possibly the addition of a uib-dashboard node that uses data-driven composition. As a half-way house between code-driven and visual-layout approaches.

In Progress

To see what is currently being developed, please look at the “Unreleased” section of the Changelog

Questions that need answers

	How best to allow other nodes to provide zero-code nodes - that allow auto feedback from the front-end? e.g. something like the node-red-contrib-ui-time-scheduler [https://github.com/fellinga/node-red-contrib-ui-time-scheduler] node.

	How to provide a better log output? With a simple way to link to Node-RED log output (filtered) as well as a dedicated output node. That output’s to a web page with highlighting and possibly page back/fwd through history.

Next - these are things that need to be done

	NEW NODE - uib-html - Hydrates msg._ui configurations

Uses the same code as the client library. Outputs HTML on msg.payload, removes the input msg._ui.
Optionally, can add one of the uibuilder templates as a wrapper to the input payload HTML or wrap in a non-uibuilder template

Why?

	Learn how to write your own HTML

	Output to a uibuilder node to save processing the _ui data in the front-end

	Output to a uibuilder server folder for use in your app as a static load (or occasionally changing load)

	Output to a file for use in an external (to Node-RED) static web server/service

	Output to an http-out node as a response to a request

	Output to a ui_template node for incorporation in Dashboard UI’s

	NEW NODE - uib-save - Easily save files to uibuilder-specific locations

Select a deployed uibuilder node as the “parent” and the server folder location will be set for you so that you don’t need to remember it.

Why?

	Save msg._ui configuration data to a static JSON which can then be used to load an entire UI on page load.

	Save/update files that are automatically available via the uibuilder web. For example a static web page that is perhaps updated periodically. This could also work with data, JavaScript, CSS, etc. In fact anything that can be serialised or that is already a string.

	Use with the uib-html node to save static HTML files built via uib-element or some other flow that outputs msg._ui configurations.

	~~NEW NODE - uib-get - Gets data from a page’s DOM. Will use the uiGet function.~~ No longer needed, use msg._uib commands in std msg.

	Continuing documentation improvements

	README.md: Add more links to the Features section so that each feature points to appropriate documentation. Add a landing-page link to “includes many helper features” to signpost to relavent detailed documentation.

	Node-specific docs.

	Reorg docs to make more sense to new starters & make more logical.

	Change fixed text to use RED._ for l8n. See: https://discourse.nodered.org/t/flexdash-alpha-release-a-dashboard-for-node-red/65861/48. ref [https://discourse.nodered.org/t/question-on-internationalisation-can-i-have-1-json-file-for-several-nodes/76300/2]

	Allow control of browser html cache from Node-RED. Add an auto-restore on load option. (? Add send updates back to Node-RED option - control msg ?)

	Use alt logging for websocket disconnects, sleep, error, etc

	Example stand-alone node package as exemplar

	probably chart

	How to pass data through?

Improvements to uib-cache node

	CHANGE CONTEXT VAR HANDLING TO DEAL WITH ASYNC

	Output node.warn msg if recv input with no “Cache by” msg prop. (e.g. no msg.topic for default setting)

	Add cache clear button to complement the cache clear control msg

	Add optional page filter - a cache with a page filter will only send the cache if the replay request is from that page. Page filters need to allow a list of pages and ideally wildcards.

	Allow send to client id - would need clientId to _socketId map to be maintained by uibuilder.

	Add checks to prevent non-string cache by property values.

	Add empty cache button.

	Think about impact of a cache clear (affects all connected clients)

Impovements to uib-sender node

	CHANGE CONTEXT VAR HANDLING TO DEAL WITH ASYNC

Extensions to the uib-element node

	Add input to allow restriction by pageName/clientId/tabId

	Add individual class handling to _ui processing. ref [https://developer.mozilla.org/en-US/docs/Web/API/Element/classList].

	New type “Clone” - use a template or other element already in the HTML and copy it to a new position in the DOM. Applies attribs/slot changes if specified. Templates themselves are invisible.

	“Text Box” type - allow msg.payload to be an array with each entry being a new para.

	Consider making the main input selectable (e.g. not just msg.payload)

	Disable or hide inputs when unused for a specific type.

	As more element types are added, group into types: main, add, form, etc

	? Have JSON input msg templates for each type with links to copy to clipboard ?

	Add more elements:

	[x] List (ul, ol, dl)

	Future improvements:

	Better validation of input data

	list-style-type (add to outer) - several options plus text (incl emoji’s)

	? Optional list leading/trailing text ?

	[x] Table

	Future improvements:

	Additional field definitions in input data

	Better validation of input data

	Caption

	If named row comes from a field, make sure it is the 1st col and marked as a th

	Add data-row-name to td’s as well

	[x] HTML - allow raw html to be sent - e.g. from template node

	[x] Page Title

	[x] tr - Add a row to an existing table

	[x] li - Add a row to an existing ul/ol list

	Future improvements:

	Better validation of input data

	list-style-type (add to outer) - several options plus text (incl emoji’s)

	[x] Card/Article

	Future improvements:

	Better layout, more optional internal structure (footer, etc)

	[x] Simple Form - Input types: button, checkbox, color, date, detetime-local, email, hidden, month, number, password, radio, range, tel, text, time, url, week

	Future Improvements:

	Better validation of input data

	Additional input types: select, combo, file, image, textarea.

	Eventually add extended inputs such as HTML WYSIWYG/Markdown

	Add Auto-complete for text inputs

	If no button added, make each input send changes direct - or possibly add that as an optional setting.

	[] Status Box, Status Panel - ref [https://discourse.nodered.org/t/web-endpoint-status-dashboard-uibuilder-zero-code-example/75740]
A segmented vertical/horizontal status/progress panel. For things like battery displays, etc.
Each status box has a coloured sidepanel to show the status.

	[] Toggle button, Toggle button panel
Similar to the status box/panel but for buttons.

	[] Grid/Flex-Grid
Standardised layout. With option to turn on visible grid to help with layout.

	[] Markdown
Allow raw Markdown to be sent similar to the HTML element. Will require the Markdown-IT library to be loaded as per other uibuilder Markdown support.

	Individual Form Elements
This is to enable additional form elements to be added to an existing form.

	[] Select - https://www.w3.org/WAI/ARIA/apg/example-index/combobox/combobox-autocomplete-both.html

	[] Input

	[] button (NB: add type=”button” to avoid form submit issues, click=uibuilder.eventSend by default)

	[] tbody
Additional table body sections. ref [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/tbody#multiple_bodies]

	[] iFrame
As for ui-iframe [https://flows.nodered.org/node/node-red-node-ui-iframe]

	[] notify (globalNotification)

	[] Modal Dialogue

	[] LED (on/off/colour/brightness), LED panel
As for ui-led [https://flows.nodered.org/node/node-red-contrib-ui-led]

	[] Status timeline
Maybe uPlot with timeline plugin? ref [https://github.com/hotNipi/node-red-contrib-ui-state-trail/blob/master/ui-state-trail.js]

	[] Image.
Allowing for buffer->data-uri->img-tag, data-uri->img-tag, URL->img-tag. ref [https://flows.nodered.org/node/node-red-contrib-image-tools]

	[] Container
Standard layout. With option for drag/drop of contents. ref [https://discourse.nodered.org/t/is-there-a-pallete-that-can-do-this/75143?u=totallyinformation]

	[] Style/Theme changer.
Extended version of the one in my experimental W3C Components repo. Will let you change between light/dark mode, change base colours, etc. Example component [https://github.com/TotallyInformation/web-components/blob/main/components/uib-theme-changer.js]

	[] Accordian.
ref [https://css-tricks.com/quick-reminder-that-details-summary-is-the-easiest-way-ever-to-make-an-accordion/]

	??? How to allow EXTERNAL element definitions ??? e.g. Someone else’s contributed package.

Extensions to the uib-update node

	Add input to allow restriction by pageName/clientId/tabId

	Add props: uibUpdated, uibUpdatedBy

	?? Consider if worth adding a way to update a front-end javascript variable directly ??

	New type option “Template” - Replaces the selected element with a template clone. Then applies attribs/slot if required. Ref [https://developer.mozilla.org/en-US/docs/web/html/element/template]

	Add individual class handling to _ui processing. ref [https://developer.mozilla.org/en-US/docs/Web/API/Element/classList].

Continue to improve the new uib-brand.css

	Parameterise other aspects such as font-size, typeface, varient colours, flexbox & grid spacing. `

	Create min version of css.

	Something similar to the sidebar status panel but segmented. Choose number of segments.

	Make input[type="color"] starting colour the brand colour. Can only be done via JavaScript.

	Check input:valid pseudo-class defaults

	Improve input/form elements. Ref [https://developer.mozilla.org/en-US/docs/Web/CSS/:required]

	Add treeview formatting. ref [https://iamkate.com/code/tree-views/]

Extensions to client Library

	New Functions (all to be callable from Node-RED):

	[] uibuilder.navigate(locationUrl) - change page. Ensure it works with SPA routers and with anchor links.

	[] elementExists(selector), elementIsVisible(selector) - methods for checking if an element exists on the page and whether it is visible to the user.

	[] uibuilder.cacheSend() and uibuilder.cacheClear() - send ctrl msgs back to node-red - reinstate in uib-cache fn now we’ve removed extra ctrl send.

	[] uibuilder.showLog() - Add a visible panel on-page to show console.log output. Redirects (or maybe copies) uibuilder.log output - possibly also console.log. Will need amendments to the uibuilder.log function to give options for output to this and/or back to Node-RED.

	[] HARD uibuilder.convertToUI(cssSelector) - convert part/all of the DOM to _ui json structure. ref [https://stackoverflow.com/questions/2303713/how-to-serialize-dom-node-to-json-even-if-there-are-circular-references]

	[] ~~uiUpdate(cssSelector, data) - mirroring the uib-update node’s features & allowing easy DOM updates from front-end code as well.~~ Not really needed since if you are already writing front-end code, you can simply use the uibuilder.ui function directly.

	Control from Node-RED. Functions to implement:

	[] watchDom(startStop), uiWatch(cssSelector)

	[] setPing

	[] elementExists(selector), elementIsVisible(selector)

	[] navigate(url)

	[] loadui()

	[] clearHtmlCache(), saveHtmlCache(), restoreHtmlFromCache()

	[] getStore, setStore, removeStore - control browser local storage

	[] convertToUI(cssSelector)

	Use esbuild to create IIFE version of ui.js.

	Allow file uploads

	Add individual class handling to _ui processing. ref [https://developer.mozilla.org/en-US/docs/Web/API/Element/classList].

	Add window.uib as a synonym of window.uibuilder.

	Add a jsonImport option to the _ui load method. The jsonImport property being an object where the keys are variable names to load to and the values are the URL’s to load the JSON from.

	Add manual socket.io reconnection function so it can be incorporated in disconnected UI notifications.

	Add treeview formatting to syntaxHighlight. ref [https://iamkate.com/code/tree-views/].

	Move UI code to separate include. To allow its use in the uib-html node.

	Add flags to track if the optional Markdown-IT or DOMPurify libraries are loaded and available.

	Consider watching for a url change (e.g. from vue router) and send a ctrl msg if not sending a new connection (e.g. from an actual page change).

	Option for a pop-over notification to manually reconnect the websocket.

	Investigate use of PerformanceNavigationTiming.type [https://developer.mozilla.org/en-US/docs/Web/API/PerformanceNavigationTiming/type] to detect page load type and inform uibuilder on initial message.

	Fix start options load style sheet https://discourse.nodered.org/t/uibuilder-new-release-v5-1-1-some-nice-new-features-and-illustration-of-future-features/64479/16?u=totallyinformation

	Add ability to save the current DOM.

	started To local storage - with option to reload on reload

	started (manual request is done) Send to Node-RED as a control msg (whole HTML or from a CSS Selector)

	_UI - improvements to the config-/data-driven UI creation features

	Add optional page filter to _ui - if msg._ui.pageName not matching current page, don’t process

	probably needs list and wildcard though.

	Add handling for _ui.components[n].slots where slots is an object of named slots with the special
name of default for the default slot (default must be handled first since it overwrites all existing slots)

	Add check to uibuilder.module.js to prevent adding of multiple entries with same ID

	Add HTML loader capability to _ui handling (see html-loader web component)

	Allow adding to more locations: ~~1st child rather than last~~ (done), next/previous sibling

	Add click coordinates to return msgs where appropriate. See https://discourse.nodered.org/t/contextmenu-location/22780/51

	Extend logging functions:

	Report socket.io setup/config issues back to Node-RED using beaconLog(txtToSend, logLevel).

	started Add showLog function similar to showMsg - showing log output to the UI instead of the console.

	Add option to send log events back to node-red via the navigator.sendBeacon() method.

	uibuilder node will output control msg of type Client Log when client sends a beacon.

	Make optional via flag in Editor with start msg enabling/disabling in client.

	? window and document events - make optional via uibuilder fe command.

	Add a standard tab handler fn to handle tab changes. Are DOM selectors dynamic (do they update with new DOM elements)? If not, will need to include a DOM observer.

	Extend clearHtmlCache, restoreHtmlFromCache, saveHtmlCache fns to allow sessionCache.

	Add a resizeObserver [https://developer.mozilla.org/en-US/docs/Web/API/ResizeObserver] to report resize events back to Node-RED as a control msg.

	Consider watching for a url change (e.g. from vue router) and send a ctrl msg if not sending a new connection (e.g. from an actual page change).

	Look at window.prompt [https://developer.mozilla.org/en-US/docs/Web/API/Window/prompt], window.confirm [https://developer.mozilla.org/en-US/docs/Web/API/Window/confirm] and <dialog> [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/dialog] - should _ui implement these?

	Get better control over what control messages can be sent. Centralise the list of control messages in use.

	Add functions for manipulating SVG’s.

	Allow for PWA use:

	Check for OFFLINE use and supress transport errors

	Add check for online/offline - make available to user code

	Auto-generate manifest and sw.js - need icon and to set names/urls/etc

	https://learn.microsoft.com/en-us/microsoft-edge/progressive-web-apps-chromium/how-to/web-app-manifests

	Allow push API interface as well as websocket. https://developer.mozilla.org/en-US/docs/Web/API/Push_API

	Accessibility

	Need to add a dismiss button to toasts

	Check all auto-added elements for accessibility

	Add count of current errors to title

Updates to uibuilder node

	Editor panel: Remove the “Allow passing to the front-end” from Advanced tab - no longer needed. Use msg._ui features with the updated client instead.

	Allow file uploads

	Move all filing system handling to a separate library module. Should help work out how to support implementations with limited filing systems.

	Add option to process a crafted msg from the FE that returns a JSON list of all files/folders (optionally recursive) - needs change to FE library & editor.

	In Editor, set the top-level permitted folder - relative to the Serve folder (e.g. If serving <instanceRoot>/src, that would be the default root but allow a sub-folder to be set, e.g. content so that only <instanceRoot>/src/content and below could be queried). This is to facilitate the creation of content management systems.

	Possibly also needs option as to whether data can be written back. Including options to create/delete as well as amend. To begin with, just output any changed data to port 1 and let people create their own write-back logic.

	Gracefully handle when rename cannot (re)move original folder (e.g. held open by browser).

	Files: Changing filetype in editor does not change the highlighting.

	On template load, issue reload command to all connected clients.

	Ensure that uibRoot is set to a project folder if projects in use. See PR#47 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/pull/47] and Issue #44 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/44]

	Improve handling for when Node-RED changes projects.

	Use new uib-brand.css style library on details pages.

	Add api to query if a specific uib library is installed (and return version)

	Add API test harness using VScode restbook.

	Add 4th cookie to record the Node-RED web URL (e.g. http://x.x.x.x:1800/) since uibuilder can now use a different server, it is helpful if the front-end knows the location of Node-RED itself.

	Allow instance npm installs to be served (would allow both vue 2 and vue 3 for example). Instance serves to take preference. Would need extension to editor libraries tab to differentiate the locations.

	Centralise the list of control messages in use.

	Add occasional check for new version of uib being available and give single prompt in editor.

	Improve checks for rename failures. [uibuilder:nodeInstance] RENAME OF INSTANCE FOLDER FAILED. Fatal. - these should clear after restart but sometimes don’t.

	Trace report for not loading uibMiddleware.js but not for other middleware files. Doesn’t need a stack trace if the file isn’t found and probably not at all. Make everything consistent. “uibuilder common Middleware file failed to load. Path: \src\uibRoot.config\uibMiddleware.js, Reason: Cannot find module ‘\src\uibRoot.config\uibMiddleware.js’”. “sioUse middleware failed to load for NS” - make sure that middleware does not log warnings if no file is present. ref [https://discourse.nodered.org/t/uibuilder-question-on-siouse-middleware/75199?u=totallyinformation].

	Introduce standard events: url-change (so that all uib related nodes can be notified if a uib endpoint changes url).

	uibindex change “User-Facing Routes” to “Client-Facing Routes”.

	Editor:

	Improve help box for _uib switch

	Add template description to display.

	Add dependency version handling to templates (e.g. vue 2/3)

	Switch tooltips to using aria-label with hover CSS as in the new node.

	Remove scripts/css flags from uibuilder panel, no longer in use (not while old client library still in use)

	Change getFileList to only return files, use the separate folder list for folders. No need to run it multiple times then.

	Update the Advanced > Serve dropdown list after creating a new top-level folder (to save having to exit and re-enter the panel).

	settings.js option to allow _ files to show in editor. https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/190.

	Creating new folder - new folder should be selected after create.

	NEW TAB: Build - run npm scripts, install instance libraries (for dev or dependencies - just dev initially)

	Add visual error when changing advanced/Serve to a folder with no index.html.

	Option for project folder storage.

	Better icons! See https://discourse.nodered.org/t/wish-for-new-nodes/73858/20

	Libraries tab

	Add update indicator to Libraries tab.

	Trigger indicator to Libraries to show if new major version available when switching to the tab.

	Consider adding an action for when a uibuilder node is selected - would open the web page. https://discourse.nodered.org/t/call-link-from-node-red-editor-ctrl-shift-d/73388/4

	Add optional sidebar (or drop-down menu on NR header bar) displaying list of all uib URLs (and link to nodes).

	Move folder management to a popup dialog (to save vertical space)

	If uibRoot and the browser are on the same client, add an “Edit with VSCode” link to the Files tab

	Add all local package.json script entries as links/buttons so they can be run from the editor panel.

	If dev script discovered in local package.json scripts, enable a dev button so that a CI dev service can be spun up (e.g. Svelte). Will need debug output to be visible in Editor?

	Show Socket.io server & client versions

	Extend folder/file management

	Allow renaming of files/folders.

	Add the common folder to the file editor.

	Allow editing in the common folder not just the instance folder.

	Add a file upload button.

	Method to import/export front-end files. Needs ZIP/Unzip functions at the back-end.

	Add a reminder to the Editor help about examples. Add an onclick to that icon that calls RED.actions.invoke(’core:show-import-dialog’); as a quick action to get the user to the import dialog. See here [https://discourse.nodered.org/t/documentation-example-flows-for-contributed-nodes/44198/2?u=totallyinformation] for more info.

 title: Securing Data description: > How to secure access to data when using Node-RED and uibuilder. created: 2022-02-27 14:09:44 lastUpdated: 2022-04-01 17:54:08

title: Securing Data
description: >
How to secure access to data when using Node-RED and uibuilder.
created: 2022-02-27 14:09:44
lastUpdated: 2022-04-01 17:54:08

It is best to read the Securing uib web apps page before this one as that page gives the overview of security in general.

TBC

	Sanitising data inputs

	Is authentication true? (using external auth and/or custom uibuilder middleware)

	Using the uibuilder ping endpoint to extend client sessions

 title: uibuilder Security Documentation description: > Some thoughts on how to correctly and safely secure a uibuilder app. created: 2020-01-05 20:45:00 lastUpdated: 2022-04-01 17:53:58

title: uibuilder Security Documentation
description: >
Some thoughts on how to correctly and safely secure a uibuilder app.
created: 2020-01-05 20:45:00
lastUpdated: 2022-04-01 17:53:58

As at uibuilder v5, many of the security features in uibuilder have been removed as they were never complete and were holding back other development. Security of web apps is best done using a dedicated service anyway. Typically a reverse-proxy using a web server can be used to provided integrated security and authentication. Such services can be independently tested and verified.

However, there are a number of supporting features in uibuilder that let you control information flow into and out-of a uibuilder-based front-end. They assume, however, that you have either provided authentication externally or written your own middleware-based security functions.

!> WARNING: I am not a professional developer, nor am I an operational DevOps person. I make no claims nor do I provide any warrenties or guarantees about the fundamental security of a web app developed with uibuilder. If you are unsure, you need to pay a professional to audit and penetration test your specific configuration as well as my code.

?> Having said that, if you or anyone else discovers flaws in the programming, I will work with you/them as well as I can in order to fix things. But this is not a paid-for development and I don’t always have much time. I’m also open to Pull Requests to fix specific issues.

	Terminology

	How do I secure my uibuilder app?

	Step #1: TLS (HTTPS)

	Step #2: Sanitising Inputs

	Step #3: Identity and authentication

	Step #4: Authorisation

	Step #5: Restricting access to data

	Step #6: Security Testing

	Step #7: Logging & Monitoring

	Securing the Infrastructure

	Configuring Node-RED for TLS

	Configuring the uibuilder custom server for TLS

	Standard Schema for msg._auth

	Additional Information

	Ideas for custom authentication schemes using uibuilder

Terminology

IT Security in general is a complex and specialist area. As such it comes with its own terms, a few of which are particularly relavent here.

	TLS (Transport Layer Security) - provides an encrypted, over-the-wire channel of data exchange using a Public Key Infrastructure (a private key and public certificate). It is the method used to secure HTTPS and WSS protocols. Its predecessor was SSL (Secure Sockets Layer) though this should no longer be used.

	HTTPS, WSS, FTPS - are all examples of information exchange protocols protected by TLS.

	IDAM (or IDM, Identity and Access Management) - these are the tools and practices involved in identifying, authenticating and authorising users or other systems.

	PKI (Public Key Infrastructure) - are a set of tools used to manage the issuing and revoking of certificates and keys used for TLS and other strong security. Let’s Encrypt [https://letsencrypt.org/] is a good example of a public, free PKI service (please consider donating to them if you use them in commercial tools or services).

How do I secure my uibuilder app?

Before you even get started trying to secure Node-RED or a uibuilder app, you must note that all of the steps below are worthless if an attacker can simply bypass your security by gaining access to your network and servers. So everthing is dependent on ensuring that they are also secured. However, that is outside the scope of this page.

	Step #1 is to make sure that all access to both the Node-RED Editor and your UI is encrypted using TLS (e.g. using HTTPS not HTTP and WSS not WS). If you don’t do this, any other work on security is meaningless.

	Step #2 is to make sure that any information provided by a user (or another system) is sanitised. That’s to say, that input is restricted to a sensible length and character set as a minimum. Ideally restricting input to a specific format where that makes sense (e.g. emails). This is to ensure that your system cannot be broken or hacked by someone or something entering invalid information. There are many attacks based on abusing input, so don’t overlook this step, it is critical.

	Step #3 is to have a means to record the identities of users and a means to enable those users to prove that they are who they claim to be. This is the identity and authentication step. You can hand-off user identities to a 3rd-party if you prefer or keep your own record. Authentication can also be handed-off by using a standard such as OAuth/OIDC (for public cloud services such as Google, Azure, GitHub, Facebook, etc) or SAML (typically for enterprise systems).

	An optional step #4 is authorisation. For many web apps, authentication is sufficient, but if you want to be able to have different levels of protection for different areas of your app, you may need a way to give users different levels of access.

	Step #5 is to ensure that any restricted data can only be accessed by authenticated and authorised identities. For uibuilder, this may be done using Node-RED flows and uibuilder ExpressJS and Socket.IO middleware.

	Step #6 is Test, Test, Test!. Your system is not secure unless you have proven it to be so. Obviously, for low-value, small-target systems such as a home automation system, you won’t be able to hire a professional to do Penetration Testing. However, for a commercial service and for anything of value, you must do professional grade security testing.

	Step #7 is Monitoring. If you think you have secured your web app but don’t monitor it, you will never actually know whether you are successful. You also need to remember that something that is secure now may not be tomorrow. So record & check access, monitor data quality.

Some additional information about these steps is given below.

Step #1: TLS (HTTPS)

If you can run a reverse proxy on the same device as Node-RED or on another device connected to the Node-RED server via a secured, internal-only network, then you should configure that proxy to handle the TLS encryption as this will almost certainly always be more secure, easier to manage and more performant. See the Securing apps using NGINX page for an example.

If you cannot run a reverse proxy at all, then you will have to configure Node-RED to use TLS. uibuilder can use the same ExpressJS web server that Node-RED creates or it can create a new instance. In that case, you can either still use Node-RED’s settings for HTTPS or you can configure uibuilder to use its own.

If you can run a reverse proxy but it or Node-RED is on a network that may get lots of different traffic, it is strongly recommended that you still use the proxy for external security but also configure Node-RED to use TLS as well.

?> A reverse proxy provides a number of advantages and is the recommended approach.

Step #2: Sanitising Inputs

Step #2 of securing any web app is to make sure that a potential attacker or just a ham-fisted user cannot break, damage or gain unwarrented access simply by what they enter into a form or select on a URL.

	Restrict the length of data that can be provided from your UI. For text fields, 255 characters is about the maximum you should ever allow. Unrestricted inputs can result in buffer-overflow attacks.

	Restrict what characters can be entered. Where you don’t need the full Unicode character set, don’t allow it. For example, if asking for an email address, only allow valid characters.

	Restrict specific inputs to a sensible format. For example, email addresses have a prefix, an @ symbol followed by a domain name. A date needs 99/99/9999 or 9999-99-99, a time in hours and minutes needs 99:99 and so on.

Don’t forget that API inputs need to be sanitised as well as user inputs.

?> For simple systems, doing this step via Node-RED and/or uibuilder middleware may be sufficient. In more secure systems, sanitisation of inputs may be done at multiple levels for additional protection and may use tools such as a Web Application Firewall or an Intrusion Protection System. For a full analysis of best practice, try the OWASP [https://owasp.org/] documentation.

Step #3: Identity and authentication

Step #3 of securing any web app is generally working out secure methods for identifying users and authenticating them.

For anything other than simple, low-value apps, it is strongly recommended that you get some expert help for this. There are lots of people who will tell you how but many of them actually don’t understand the details. Getting security right and keeping it right are hard problems and should not be under-estimated.

The guidance here is generic and should only be used on low-security, low-value apps.

NOTE: The rest of this section is TBC.

?> While identity and authorisation may be done using uibuilder ExpressJS/Socket.IO middleware, it is strongly recommended to use a separate service such as a reverse proxy with an authentication extension and then pass through appropriate information to Node-RED/uibuilder via HTTP headers and similar mechanisms.

Step #4: Authorisation

This step for securing web apps isn’t always needed. It controls authorisation for what each user or group of users can and cannot do.

For simple IoT home automation, this is probably overkill. For entrprise production and customer-facing apps, this will certainly be needed.

Authorisation controls however are a whole other topic beyond the scope of this document. At some point, I will try to create some guidance documents for doing authorisation with uibuilder apps.

Step #5: Restricting access to data

Once you have ensured that you have a secure way to prove the identity of a person or system accessing your app, you then need to provide some mechanisms to prevent access except where it is allowed.

Typically, for inexperienced developers, this step is where they may start but as you can see, there are several important steps before this.

?> It is worth noting here that steps 2, 3, and 4 can all be done in Node-RED and uibuilder. However, it is not recommended. It is better to have a “separation of concerns” and keep specialist tasks such as identity and authorisation in their own tools.

For Node-RED and uibuilder-based apps, controlling access is done by writing flows and/or ExpressJS/Socket.IO middleware to make use of the identity (and authorisation if configured) that has been authenticated.

Of course, that requires that any external security services are passing suitable data down to Node-RED.

?> It is important to remember that uibuilder apps are web pages - they run in the browser, not in Node-RED. You cannot make things secure in the front-end code of a web app since the user will always be able to make changes. So security must be done at the server. Node-RED flows and uibuilder middleware run on the server. It is also important to remember that uibuilder makes extensive use of websockets to send and recieve data between Node-RED and the browser. This presents some technical challenges for ensuring data security.

 title: Using the Sender node description: > Describes how and why to use the uib-sender node and how to return messages from your front-end code. created: 2021-12-31 15:31:06 lastUpdated: 2021-12-31 15:31:11

title: Using the Sender node
description: >
Describes how and why to use the uib-sender node and how to return messages from your front-end code.
created: 2021-12-31 15:31:06
lastUpdated: 2021-12-31 15:31:11

The sender node was added in uibuilder v5. It provides an easy method of sending messages to your front-end
from anywhere in your flows and a method of easily getting a response back again.

On a simple level, you can simply use it as a simplified replacement for a pair of link nodes. Link nodes require
a dedicated “wire” between them and you have to have a link-in node in front of your uibuilder node.

Advantages of the sender node

	No extra -in node needed, just select an existing uibuilder node.

	Integrated method that lets you send a response back to your sender node from your front-end.

	Allows optional pass-through of source messages.

Advantages of the link nodes

	Inbound messages can be passed into a caching node - this is not possible with the sender node as it goes directly.

Using the sender node

Make sure you have at least one uibuilder node set up and deployed.

Add a uib-sender node with an input flow. Select the appropriate uibuilder node to send to.

In your front-end JavaScript, make sure you have a uibuilder.onChange('msg', function(msg){ }) function set up.

In that function output the content of incoming messages. You will find that a message from the sender node looks something like:

{
 "_msgid": "c633e8a0504770f1",
 "payload": "SENT",
 "topic": "From the sender node",
 "_uib": {
 "originator": "85fee74096237ff3"
 }
}

By retaining the _uib.originator property, any message you send from your front end will return back to the sender node as long as you set that node to allow returns. Note that you can send a message from the browser dev tools console.

uibuilder.send({
 "_msgid": "c633e8a0504770f1",
 "payload": "RESPONDED!",
 "topic": "From the front-end",
 "_uib": {
 "originator": "85fee74096237ff3"
 }
})

That’s it.

 title: Developer documentation for socket.js description: > A singleton class that manages the interactions with Socket.IO and so provides all of the communications between Node-RED and front-end code. created: 2021-06-27 21:35:00 lastUpdated: 2022-04-02 17:14:51

title: Developer documentation for socket.js
description: >
A singleton class that manages the interactions with Socket.IO and so provides all of the communications between Node-RED and front-end code.
created: 2021-06-27 21:35:00
lastUpdated: 2022-04-02 17:14:51

	Socket.IO Server Options

	Example

	Socket.IO Middleware

	Namespace (client connection) Middleware - sioMiddleware.js

	Client message Middleware - sioUse.js

	Server message Middleware - sioMsgOut.js

	Socket.IO Options

	Default CORS Options

Socket.IO Server Options

The Socket.IO server options [https://socket.io/docs/v4/server-options/] can be changed by adding a custom
property (uibuilder.socketOptions) to your Node-RED settings.js file.

You can override anything except the path property. However, use caution as careless settings may break
communications between Node-RED and your front-end code.

Example

/** Custom settings for all uibuilder node instances */
uibuilder: {
 /** Optional HTTP PORT.
 * If set and different to Node-RED's uiPort, uibuilder will create
 * a separate webserver for its own use.
 */
 port: process.env.UIBPORT || 3001,
 /** Optional: Change location of uibRoot
 * If set, instead of something like `~/.node-red/uibuilder`, the uibRoot folder can be anywhere you like.
 */
 uibRoot: process.env.UIBROOT || '/src/uibRoot', //path.join(os.homedir(), 'myuibroot')',
 /** Optional: Socket.IO Server Options. See https://socket.io/docs/v4/server-options/
 * Note that the `path` property will be ignored, it is set by uibuilder itself.
 * You can set anything else though you might break uibuilder unless you know what you are doing.
 * @type {Object}
 */
 socketOptions: {
 // Make the default buffer larger (default=1MB)
 maxHttpBufferSize: 1e8 // 100 MB
 },
},

Socket.IO Middleware

Three Socket.IO middleware functions are available for configuration in uibuilder.

They all use named files in the <uibRoot>/.config/ folder. Templates for them are copied each time Node-RED (re)starts. The template files
are named with an .js-template extension to prevent them overwriting your live code. The template files contain some simplistic example code.

Namespace (client connection) Middleware - sioMiddleware.js

This middleware runs on the server every time a client connects to the Socket.IO server using HTTP. Typically, this is just once when
the client initially connects. After that, the client is usually “upgraded” to a websockets connection and this middleware is no longer called.
However, it is possible that the client may connect over HTTP multiple times before the connection is upgraded. It offers a single function for all instances of uibuilder.

This middleware DOES have access to the Socket.IO server object. For convenience, the Node-RED log functions have been attached
to each Namespace object and are therefore accessible from within the code as socket.nsp.log.info(), etc.

The function in this middleware MUST return next() or return next(new Error('Some Error ...')) otherwise no client will be able to connect.

If you raise an error in this, the client will not be able to procede and the connection attempt will fail. No communications will be possible.
For this reason, you can use this middleware to assist with authentication and/or authorisation. As long as you remember that it is only called
on the first connection which means that you cannot use it to monitor for session timeouts.

This middleware has access to the socket object. The client adds the client ID (set by uibuilder on initial HTTP connection from client) to socket.handshake.auth.clientId

Client message Middleware - sioUse.js

This middleware runs on the server every time a message from a client is sent to the server. It offers a single function for all instances of uibuilder.

A template for this file is updated in your live <uibRoot>/.config folder each time Node-RED (re)starts. This ensures that you always have the latest version to hand. You should recheck the template each time you update uibuilder.

This middleware does NOT have access to any of the Socket.IO, uibuilder or Node-RED properties. However, it can make changes to the inbound msg before it is processed by uibuilder.

The function in this middleware MUST return next() or return next(new Error('Some Error ...')) otherwise no client will be able to connect.

If you raise an error in this, it is shown in the Node-RED log and an attempt is made to send an error message back to the client.

Example:

/**
 * Template Socket.IO `use` middleware for uibuilder. Fn will be called for EVERY inbound msg from a client to Node-RED/uibuilder.
 * UPDATED: 2022-04-01
 *
 * NOTES & WARNINGS:
 * 1) This function is called when a client sends a "packet" of data to the server.
 * 2) Failing to either return or call `next()` will mean that your clients will never be able to get responses.
 * 3) You can amend the incoming msg in this middleware.
 * 4) An error in this function will probably cause Node-RED to fail to start at all.
 * 5) You have to restart Node-RED if you change this file.
 * 6) If you call `next(new Error('blah'))` The error is sent back to the client and further proessing of the incoming msg stops.
 * 7) To use for authentication/authorisation with Express and sio connection middleware, create a common node.js module.
 *
 * Allows you to process incoming data from clients.
 *
 * see: https://socket.io/docs/v4/server-api/#socketusefn
 * see also: uibRoot/.config/sioMiddleware.js & sioMsgOut.js
 * and https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#websocket-implementation-hints
 *
 * @param {[string,Array<Object>]} data The channel name (strictly the event name) and args send by a client (Socket.IO calls it a "packet"). data[0] is the channel/event name, data[args][0] is the actual msg
 * @param {function} next The callback to hand off to the next middleware
 */
function sioUseMw([channel, ...args], next) {

 const msg = args[0]

 console.log('[uibuilder:Socket.IO:sioUse.js] msg from client: ', 'Channel Name:', channel, ' Msg:', msg)

 // Simplistic error example - looking for specific property on the inbound msg
 if (msg.i_am_an_error) {
 // The error is sent back to the client and further processing of the msg stops
 next(new Error('Oops! Some kind of error happened'))
 return
 }

 // You can amend the incoming msg
 msg._test = 'added by sioUse.js middleware'

 next()

} // Do not forget to end with a call to `next()` or clients will not be able to connect

module.exports = sioUseMw

This results in a msg like the following being sent back to the client:

{
 "uibuilderCtrl": "socket error",
 "error": "Oops! Some kind of error happened",
 "_socketId": "I02mCJZ1oKGGYiK8AAAu",
 "from": "server"
}

This can be watched for by using something like the following in your front-end JavaScript code:

uibuilder.onChange('ctrlMsg', function(msg){
 if (msg.uibuilderCtrl === 'socket error') {
 // ... do something ...
 }
})

The msg does not get sent into Node-RED other than to the Node-RED log.

Of course, some errors may result in the client being unable to connect and therefore they will not get the message. However, the Node-RED log will still show an error.

Server message Middleware - sioMsgOut.js

This middleware runs on the server every time a message from the server is being sent to a client. It offers a single function for all instances of uibuilder.

A template for this file is updated in your live <uibRoot>/.config folder each time Node-RED (re)starts. This ensures that you always have the latest version to hand. You should recheck the template each time you update uibuilder.

This middleware does NOT have access to any of the Socket.IO, uibuilder or Node-RED properties.

If you raise an error in this, it is shown in the Node-RED log only. The function may make changes to the msg before it is sent.

Example:

/**
 * Template Socket.IO outbound per-msg middleware for uibuilder. Fn will be called for EVERY outbound msg from Node-RED/uibuilder to a client.
 * UPDATED: 2022-04-01
 *
 * NOTES & WARNINGS:
 * 1) This function is called whenever any instance of uibuilder sends a msg to any client.
 * 2) You have to restart Node-RED if you change this file.
 * 3) You can use this to make changes to the msg before it is sent.
 *
 * Allows you to process outgoing data to clients. Use it to add security/user data or anything else.
 *
 * @param {object} msg The msg being seny by uibuilder to a client
 * @param {string} url The uibuilder instance url
 * @param {string} channel The socket.io channel being used
 */
 function sioMsgOutMw(msg, url, channel) {

 console.log('[uibuilder:Socket.IO:sioMsgOut.js] msg from server: ', msg, url, channel)

}

module.exports = sioMsgOutMw

Socket.IO Options

You can override the default Socket.IO server options by using the uibuilder.socketOptions property in settings.js. All Socket.IO server options can be
overridden. This can be useful for changing the default buffer size (which limits message sizes) and for changing the default CORS options.

Default CORS Options

These are set by default to allow requests from any source. This is not terribly secure. It is strongly recommended to change this if allowing
communications over the Internet or other un-/semi-trusted network.

 title: Using the Svelte framework with uibuilder description: > How to make good use of the Svelte front-end framework with uibuilder and Node-RED. created: 2022-02-26 19:40:00 lastUpdated: 2022-04-01 21:54:35

title: Using the Svelte framework with uibuilder
description: >
How to make good use of the Svelte front-end framework with uibuilder and Node-RED.
created: 2022-02-26 19:40:00
lastUpdated: 2022-04-01 21:54:35

The Svelte framework turns out to be one of the easiest frameworks to use in conjunction with uibuilder of those that requires a build step.

One of the main reasons for this is that it’s development server “just works” even when accessing the page via Node-RED rather than directly using the development server. When you make changes to the source code, if you have Svelte’s development server running (with npm run dev in your instance root folder), any changes will instantly show up in your front-end.

Svelte is also a very easy framework to use and constantly rates very highly with developers. It also aligns closely to the emerging web components standards.

?> Note: uibuilder v5 comes with a simple Svelte template that you can use with the instructions below.

?> Also Note that you do not need to install Svelte using uibuilder’s Libraries tab. It needs to be installed locally in the instance folder

Using with uibuilder

These instructions assume that you have installed Node-RED using the “standard” instructions and are running it in the usual way. Make sure that you know how you’ve installed things before continuing. The ~/.node-red/ folder used below is actually referred to as the “userDir folder” and may be different on your configuration. In addition the ~/.node-red/uibuilder/ folder is referred to as the “uibRoot folder”. It may also be moved from the default location.

	Create a new uibuilder instance and change the url to svelte (or whatever you want). Click on Deploy.

	Change the template to “Svelte Basic”. Accept the warning.

The Svelte Basic template includes all of the configuration required to get up and running and even includes the built version of the code in the dist folder so that you don’t need to do any build at all until you want to change something. See the README.md file that the template includes for further information.

Please remember to remove the following files from the src folder: index.html, index.css, index.js. These will be left behind if you deployed your uibuilder node with the basic template before switching to the Svelte Basic template.

	Change the “Serve” setting from src to dist in the settings panel and re-deploy.

	Open a command line to the instance root folder, e.g. ~/.node-red/uibuilder/svelte

	From the instance root folder run the command npm install && npm run dev

Note that the dev process creates its own web server but you should ignore that. Just leave it running if you want to have your web page auto-reload when you make changes to the files in src.

	Now load the uibuilder page with http://127.0.0.1:1880/svelte/ (or wherever yours ends up)

Marvel at the amazing dynamic, data-driven web app you just made with a few clicks!

?> Once you have made whatever changes you want, you can exit the dev server and run npm run build. This will update the /dist/build/ bundles with optimised versions ready for production. The template includes built bundles so that you can run it straight out of the box.

Going further

OK, so not the most amazing thing. But lets note a couple of important points. (Restart the dev server first if you exited it above.)

	Make a change to the text in the App.svelte page and save it - notice anything on your web page?

Yup, it changed without you having to reload it! Just like Svelte’s own dev server :grin:

	Attach a debug node to the output of your uibuilder node. Make sure it is set to show the whole msg object. Now click on the button on your page. Notice that you get a message just by clicking the button, no code required (other than the HTML for the button itself).

That uses the new eventSend function in uibuilder v3.2

Note how the data-xxxx attributes are sent back to node-red in the payload, one of which is dynamic thanks to Svelte. Also note that the msg.uibDomEvent.sourceId in node-red contains the text of the button. Try adding an id attribute to the button to see what difference it makes.

	Send a msg to the uibuilder node and note how the payload appears on the page

5 lines of code in total to do that :grin:

Just a few lines of actual code for a simple, data-driven web page. Not too bad I think.

?> Some features will be added to uibuilder in a future release that will make this even easier. There will be buttons in the Editor panel for uibuilder nodes the will let you run any npm scripts defined in your package.json file. For Svelte, that will include install, build and dev buttons. So that most of the above steps will be reduced to a couple of clicks. These changes will help anyone who needs a build step for their web app, not just be for Svelte users.

 Developer documentation for tilib.js

Developer documentation for tilib.js

tilib.js is a utility library containing methods that are reusable, not just specific to uibuilder.

Dependencies

	path

	fs-extra

Variables

None

Functions/Methods

trimSlashes

urlJoin

escapeRegExp

getNpmRunScripts

mergeDedupe

syntaxHighlight

findPackage

updatePackageList - DEPRECATED in v2.0

readPackageJson

compareArrays

 title: Configuring uibuilder description: > Describes how to change uibuilder’s configuration, options and settings. created: 2021-12-30 17:38:33 lastUpdated: 2022-04-09 18:14:18

title: Configuring uibuilder
description: >
Describes how to change uibuilder’s configuration, options and settings.
created: 2021-12-30 17:38:33
lastUpdated: 2022-04-09 18:14:18

?> This page is about the global configuration of uibuilder. If you are looking for information on how to configure an individual uibuilder node instance, please refer to the Configuring uibuilder nodes page.

uibuilder is configured in a number of places.

Obviously, each node instance you add to your flows has its own configuration which is set in the Node-RED Editor by double-
clicking on the node.

However, there are some additional places you may need to make changes to.

	settings.js

	<uibRoot>/.config/

	<uibRoot>/.config/uibMiddleware.js

	<uibRoot>/.config/sioMiddleware.js

	<uibRoot>/.config/sioUse.js

	<uibRoot>/.config/sioMsgOut.js

	<uibRoot>/<instance-url>/

	settings.js - may optionally have a property called uibuilder with a number of settings that are global to
all uibuilder nodes.

	<uibRoot>/.config/ - contains a number of files that are global to all instances of uibuilder nodes.

	uibRoot>/<instance-url>/ - contains the settings, build modules and front-end code for the specific instance
of uibuilder nodes.

settings.js

This file contains the global settings for Node-RED. You can add a new property to it called uibuilder as in the following example that describes all of the current options.

 /** Custom settings for all uibuilder node instances */
 uibuilder: {
 /** Optional HTTP PORT.
 * If set and different to Node-RED's uiPort, uibuilder will create
 * a separate webserver for its own use.
 */
 port: process.env.UIBPORT || 3001,

 /** Optional: Change location of uibRoot
 * If set, instead of something like `~/.node-red/uibuilder`, the
 * uibRoot folder can be anywhere you like.
 */
 uibRoot: process.env.UIBROOT || path.join(os.homedir(), 'myuibroot'),

 /** Only used if a custom ExpressJS server in use (see port above)
 * Optional: Default will be the same as Node-RED. @type {('http'|'https')}
 */
 customType: 'http',

 /** Only required if type is https, http2. Defines the cert & key.
 * See Node-RED https settings for more details.
 * @type {Object<Buffer,Buffer>}
 */
 // https: {
 // key: 'keyname.key',
 // cert: 'fullchain.cer'
 // },

 /** Optional: Custom ExpressJS server options
 * Only required if using a custom webserver (see port setting above).
 * For a full list of available options, refer to http://expressjs.com/en/api.html#app.settings.table
 */
 serverOptions: {
 // http://expressjs.com/en/api.html#trust.proxy.options.table
 'trust proxy': true, // true/false; or subnet(s) to trust; or custom function returning true/false. default=false
 /** Optional view engine - the engine must be installed into your userDir (e.g. where this file lives)
 * If set as shown, ExpressJS will translate source files ending in .ejs to HTML.
 * See https://expressjs.com/en/guide/using-template-engines.html for details.
 */
 'view engine': 'ejs',
 // Optional global settings for view engine
 'view options': {},

 // Custom properties: can be used as vars in view templates
 'footon': 'bar stool',
 },

 /** Optional: Socket.IO Server Options.
 * See https://socket.io/docs/v4/server-options/
 * Note that the `path` property will be ignored, it is set by
 * uibuilder itself. You can set any other setting, though you
 * might break uibuilder unless you know what you are doing.
 * @type {Object}
 */
 // socketOptions: {
 // // Make the default buffer larger (default=1MB)
 // maxHttpBufferSize: 1e8 // 100 MB
 // },

 /** Controls whether the uibuilder instance API feature is enabled
 * Off by default since uncontrolled instance api's are a security and
 * operational risk. Use with caution. See Docs for details.
 */
 instanceApiAllowed: true,
 },

<uibRoot>/.config/

Master uibuilder configuration files. Created and pre-populated with template examples upon installation.

Note that the example templates end with .js-template and that the template files are always overwritten each time Node-RED starts. This ensures that the templates are always the latest versions but avoids overwriting any live files.

<uibRoot>/.config/uibMiddleware.js

ExpressJS middleware, called for all uibuilder node instances whenever a client connection is made (for user-facing API calls as well as UI’s).

This should be kept as short and efficient as possible since it will be called many times for all client connections.

It may be used to provide custom authentication and authorisation processing if desired or to add/change custom headers, etc.

<uibRoot>/.config/sioMiddleware.js

Per-client-connection server Socket.IO middleware.

Contains an exported function that is run every time a client (e.g. a uibuilder powered browser tab) connects to the Socket.IO server embedded in a uibuilder node. It can be used as part of security processes.

See Developer documentation for socket.js for more details.

<uibRoot>/.config/sioUse.js

Per-inbound-message Socket.IO middleware.

Contains an exported function that is run every time a message is received to any uibuilder node from any client browser. The function may make changes to the message and/or block receipt of the message. It can be used as part of security processes.

See Developer documentation for socket.js for more details.

<uibRoot>/.config/sioMsgOut.js

Per-outbound-message Socket.IO middleware.

Contains an exported function that is run every time a message is sent from any uibuilder node to any client browser. The function may make changes to the message. It can be used as part of security processes.

See Developer documentation for socket.js for more details.

<uibRoot>/<instance-url>/

These folders contain the information for configuring your front-end UI.

Normally, you will expect to see at least the following:

	src/ - The folder containing the source code that defines your UI. It should always contain at least an index.html file. Typically, it will also contain index.js and index.css files. This folder is the default location presented via the Node-RED web server as http://node-red-host:1880/<instance-url>/ so anything you put in it will be available via the web server.

	dist/ - This folder should be used as the target of any “build” process. It will be served instead of the src folder if you choose it in the uibuilder advanced options. See the “Svelte Basic” template for a good example.

	package.json - This is a fairly standard npm package description file and should describe and name your UI. Strictly speaking it is not currently required (unless you want to push to GitHub as an external tempalte) but may be in the future and should be included. The standard uibuilder templates contain examples. It is good practice to include "private": true, to prevent the folder being accidentally published to npm.

Expect this file to take on more importance in the future. Specifically, the scripts section will be used in a future release to let you easily run npm scripts from within the Node-RED Editor. This will be particularly useful for doing builds.

	README.md - Useful to include a more detailed description of your UI. Not actually required but certainly good practice. It is required if you decide to push your UI to GitHub to make it available to others as an external template.

	.eslintrc.js - Again not strictly required but useful if you are using ESLint to check your code for issues, consistency and quality.

	api/ - Optional folder. Any .js files contained within it will be loaded as instance API’s if your configuration allows it. See the instance API’s page for more details.

	scripts/ - Optional folder. Used for utility scripts that might be needed to help with build processes and the like.

	node_modules/ - Not directly part of uibuilder. This folder will exist if you have locally installed any dependencies for this uibuilder instance. Typically, these would be “dev dependencies” defined in the package.json file and used as part of a build process. You do not need to back these up or commit them to a source code repository.

 title: Future multi-node communications description: > Initially, uibuilder was a single node. However, there was always the intent to offer wider communications from other packages and nodes to uibuilder-based front-end’s. This document lays out a proposal for how that may happen. created: 2021-09-29 20:04:36 lastUpdated: 2021-09-29 21:17:01

title: Future multi-node communications
description: >
Initially, uibuilder was a single node. However, there was always the intent to offer wider communications from other packages and nodes
to uibuilder-based front-end’s. This document lays out a proposal for how that may happen.
created: 2021-09-29 20:04:36
lastUpdated: 2021-09-29 21:17:01

Status: Draft

uibuilder v5 will use the Node.js package ti-common-event-handler [https://github.com/TotallyInformation/ti-common-event-handler] to create a shareable event handler
that facilitates communications between 3rd-party Node-RED nodes and uibuilder node instances (and back again).

Each uibuilder instance will act as a hub for sending data to its connected web clients and receiving messages back and routing them back to the originating node.

Two pieces of data will be required to enable this:

	The uibuilder URL

	A component identifier

How it works - the component node

A component node will need to:

	Use the same event handler package. The module in the package is defined as a singleton class instance so it doesn’t matter which node require’s the module. All require’s get exactly the same instance.

	Use a standard event naming pattern (defined below).

	Define a component identifier that front-end code will use.

	Send events to the defined event name with a standard Node-RED msg object.

	Add pre-defined metadata to the msg so that uibuilder and front-end code know how to process it. See below for details.

	Register a return event handler with a specific naming convention (defined below).
The uibuilder instance will maintain an internal map of component-id’s to return event names so that messages back from the front-end can be automatically routed back to the originating node.

	Send an initial control msg on Node-RED startup that will allow uibuilder to create the return map.

	Send a final control msg on node removal, before re-deployment and on Node-RED closedown so that all event handlers are unregistered and the map is updated.

Front-end web components

Note that the component node does not need to define any front-end components. You could just write suitable code manually for your front-end.
However, there will be a set of standards that will allow a component node to make resources available to uibuilder-based front-ends.

The important thing is that messages will be automatically routed both to and from the front-end.

It is likely that there will be a mechanism in the uibuilderfe.js front-end library that will enable it to auto-load defined resources. Details to be defined later.

How it works - the uibuilder node

When a uibuilder node receives the first event from a component node as defined below, it creates an entry in a mapping table.

The table maps the links between the component nodes (based on the node’s Node-RED id) and the component-id.
This allows return messages from the front-end to be routed back to the correct originating node for any processing that node wishes to do.
For example, it may choose to pass the returned message to its output port. This is likely to be the most common scenario.

Event naming standards

Event names will use the following standard to allow component nodes to send data:

node-red-contrib-uibuilder/<uib_url>/<component_id>

To facilitate return messages, the following standard will be used:

node-red-contrib-uibuilder/<node_instance_id>/return

Where:

	<uib_url> - is the uibuilder URL which is set in the uibuilder node and is the unique identifier for uibuilder instances.

	<component_id> - is a string identifier that is unique to your front-end code. It can be arbitrary. Component nodes can define defaults if preferred.

	<node_instance_id> - is the Node-RED node id of the instance of the component node.

Standard msg metadata

The message metadata will take two forms:

	Firstly, some uibuilder standard data. This will define the root property to use so that we keep the pre-defined properties to a minimum which avoids name-clashes and avoids limiting how you can use a msg object.

There is already a standard that uibuilder uses and it is likely that this would continue to be used and extended as needed.

A component identifier string would certainly be required. As described above, this only needs to be unique within your front-end code.

It is likely that a “component type” property would also be used to differentiate between data schema’s.

	Secondly, some component-specific data. This would be defined by the component node’s author.

This would sit under the uibuilder property so as to avoid polluting the namespace of the msg object.

It is possible that a schema standard would be defined to help but the data would mostly be defined by the component author.

Note that uibuilder already pre-defines some metadata for some tasks including security.

The future

Obviously, this design note only covers communication.

The approach has the strong advantage of being open. Which is to say that it doesn’t tie you down to a specific framework since it does not define how your
front-end code will process the data.

However, it does lay a foundation that will let nodes be created that will allow authors to create nodes with front-end components and will enable such nodes to fully automate both the component code delivery and the communications between the node and the front-end (and back of course).

This means that this approach is the first step towards a low-/no-code, simple to use, node-based web ui builder.

And yet, despite that, it does not break the core design principal of uibuilder which is to be framework agnostic and unopinionated.

 title: Configuring uibuilder nodes description: > Describes how to configure a uibuilder node. created: 2022-04-09 18:09:19 lastUpdated: 2023-02-05 16:57:42

title: Configuring uibuilder nodes
description: >
Describes how to configure a uibuilder node.
created: 2022-04-09 18:09:19
lastUpdated: 2023-02-05 16:57:42

Content moved to nodes/uibuilder

 title: Using NGNX to secure uibuilder apps description: > An outline on securing uibuilder web UI’s using NGINX as a reverse proxy server. created: 2022-02-18 16:05:17 lastUpdated: 2022-02-21 11:24:19

title: Using NGNX to secure uibuilder apps
description: >
An outline on securing uibuilder web UI’s using NGINX as a reverse proxy server.
created: 2022-02-18 16:05:17
lastUpdated: 2022-02-21 11:24:19

?> This page is DRAFT. I realise that it will confuse more than help as it stands. However, if you can be bothered to read through it a couple of times, you will realise that it already gives you many pointers on how to secure a uibuilder front-end web app using NGINX. Indeed it gives lots of information for securing any web site or web app using NGINX. 😁I will be creating a step-by-step guide at some point and that should help simplify things.

 Developer documentation for uiblib.js

Developer documentation for uiblib.js

uiblib.js is a utility library containing methods that support uibuilder. The methods it contains are not generic and will require references to Node-RED objects to be passed.

Dependencies

	fs-extra

	tilib.js

	util

Variables

None

Functions/Methods

inputHandler

processClose

getProps

sendControl

setNodeStatus

readGlobalSettings - DEPRECATED in v2.0

updGlobalSettings - DEPRECATED in v2.0

addVendorPath - TO RENAME to addPackage

 title: Developer documentation for uibuilder.html description: > Documents the processing of the html file that defines the Node-RED admin UI panel for uibuilder. Shown when double-clicking on a uibuilder node in a flow. created: 2019-06-15 14:26:00 lastUpdated: 2022-11-26 16:26:48

title: Developer documentation for uibuilder.html
description: >
Documents the processing of the html file that defines the Node-RED admin UI panel for uibuilder. Shown when double-clicking on a uibuilder node in a flow.
created: 2019-06-15 14:26:00
lastUpdated: 2022-11-26 16:26:48

!> This document needs updating, it is incomplete.

	Variables

	Properties

	Pseudo Settings

	Package List

	packageList Function

	Add button

	addPackageRow(element,index,data) Function

Variables

Properties

See the node. variables in uibuilder-js.

Pseudo Settings

These are passed as settings from uibuilder.js when RED.nodes.registerType is called. Access as RED.settings.<varName> from within the editor.

	RED.settings.uibuilderNodeEnv {String} - a copy of process.env.NODE_ENV environment variable from node.js. E.g. PRODUCTION or DEVELOPMENT.
Used to show different warnings for security processing depending on whether mode is “development” or something else.

	RED.settings.uibuilderTemplates {Array} - List of available templates and details.

	RED.settings.uibuilderCustomServer {Object} - Custom server details.

	RED.settings.uibuilderCurrentVersion {String} - Current version of uibuilder.

	RED.settings.uibuilderRedeployNeeded {Boolean} - Should the editor tell the user that a redeploy is needed (based on uib versions)?

	RED.settings.uibuilderInstances {Array} - List of the deployed uib instances [{node_id: url}].

	RED.settings.uibuilderRootFolder {String} - uibRoot, the root folder used for uibuilder data.

Package List

The package list is shown when the “Manage Front-End Libraries” button is clicked.

NOTE: Managing packages does not require a Node-RED deploy or restart.

The list is a Node-RED editable list widget [https://nodered.org/docs/api/ui/editableList/].

Setup of the list is done in RED.nodes.registerType('uibuilder', { ... oneditprepare() ... }

The list of packages is provided by the packageList() function.

packageList Function

Calls the uibvendorpackages API which is defined in uibuilder.js.

For each package in the resulting object, the editable list addItem method is called with the package name. The addItem method calls the addPackageRow function.

This adds the package name to the list without further processing.

Add button

When the add button (just under the package list) is clicked, the addPackageRow() function is called.

This creates a new row in the list with a text input box and a button marked “Install”.

If text is typed into the input box and then the Install button pressed, the addPackageRow function is called.

This results in the installPackage API being called to attempt to install the package using an exec call to npm. If that succeeds, the package name is added to the list.

addPackageRow(element,index,data) Function

If the length of data is zero, we know that the add button was pressed. This adds a row containing an input text box and an “Install” button.

If data is non-zero, the assumption is that we are adding known entries (probably via the packageList() function). The string in data is simply added to the list widget as a new row.

If the “Install” button is pressed, the uibuilder installPackage API is called with the package name.

 title: Developer documentation for uibuilder.js description: > uibuilder.js is the main file that defines the uibuilder node. It is this that is required into Node-RED when it starts. created: 2019-05-18 18:25:00 lastUpdated: 2022-11-26 16:28:09

title: Developer documentation for uibuilder.js
description: >
uibuilder.js is the main file that defines the uibuilder node. It is this that is required into Node-RED when it starts.
created: 2019-05-18 18:25:00
lastUpdated: 2022-11-26 16:28:09

!> This document needs updating, it is incomplete.

	Key processing elements

	Installation

	Global Initialisation

	Instance Initialisation

	Adding staticServer paths for vendor packages

	Client Connection

	Client Disconnection

	Global/Module Variables

	uib {Object} [Module global]

	Other variables

	uibuilder Node Instance Variables

	From the admin Editor ui

	Advanced Settings

	Security Related

	Credentials

	Locally configured (not set in Editor)

	Internals & Typedef

	Functions/Methods

	Module level

	Instance level

	Utility Classes

	Utility Functions

	Admin API’s

Key processing elements

Installation

Installing the npm module will ensure that all dependent components are also installed. VueJS and bootstrap-vue (hence also bootstrap) will be installed.

Global Initialisation

Once a uibuilder node is added to any flow, the uibuilder module will be initialised on Node-RED startup.

Everything in the module.exports function is run at this point. That creates all of the uibuilder “global” variables, functions and API’s.

The runtime RED object is available from this point onwards.

The webserver, Socket.IO and other common variables are set up here. Admin and end-user API’s are also defined at this level.

Instance Initialisation

Each instance of uibuilder is initialised when flows start.

The global function nodeInstance is called for each instance.

Adding staticServer paths for vendor packages

Call uiblib.checkInstalledPackages. Reads the packageList and masterPackageList, updates the package list file and uib.installedPackages.

tilib.findPackage is called for each package to check. New packages result in a call to uiblib.servePackage which serves up the package folder. REmoved packages result in a call to uiblib.unservePackage which removes the folder from ExpressJS.

Client Connection

A client connection is any browser tab that loads and starts the uibuilderfe.js code. So a single device/user can have many connections.

When a client loads and starts processing using uibuilder.start(), The client socket.io library handshakes with the server.

Note: that this process also happens when a client reconnects.

The server sends back a message:

{"uibuilderCtrl":"client connect","cacheControl":"REPLAY","debug":false,"_socketId":"/nr/uib#9qYqdW79Y7t9gvVtAAAA","from":"server","serverTimestamp":"2019-05-25T19:42:15.979Z","_msgid":"11547966.4e5bc7"}

The client then responds with a message:

{"uibuilderCtrl":"ready for content","cacheControl":"REPLAY","from":"client","_socketId":"/nr/uib#9qYqdW79Y7t9gvVtAAAA","_msgid":"779d7aca.e2e904"}

Both of these messages will appear on port 2 of the uibuilder node. The msg.from property indicates which direction the message is coming from/to.

The second message may be fed into a caching function/node to trigger a data dump to the client.

Client Disconnection

When a client disconnects for any reason (page reload, tab closed, browser crash, laptop closed, etc.), The server issues a “client disconnect message” to port 2 of the uibuilder node:

{"uibuilderCtrl":"client disconnect","reason":"transport close","_socketId":"/nr/uib#qWaT5gj1iMamw9OeAAAD","from":"server","_msgid":"783a6d61.408254"}

Note that if a client disconnects then reconnects it will have a different _socketId property.

Global/Module Variables

uib {Object} [Module global]

	commonFolder {String}: Default ./common/. URL for uib common folder.
The common folder contains resources made available to all instances of uibuilder.

	commonFolderName {String}: Default <uibRoot>/common. Filing system folder name of the common folder for shared resources.

	configFolder {String}: Default <uibRoot>/.config.
Filing system path to the folder containing any uibuilder global configuration files.
e.g. package lists, security and middleware modules.

	configFolderName {String}: Default <uibRoot>/.config. Filing system folder name of the config folder.

	deployments {Object}: Track across redeployments.

	installedPackages {Object}: Track the vendor packages installed and their paths - updated by uiblib.checkInstalledPackages().
Populated initially from packageList file once the configFolder is known & master list has been copied.

Schema:

{
 "<npm package name>": {
 "url": vendorPath,
 "path": installFolder,
 "version": packageVersion,
 "main": mainEntryScript
 }
}

	instances {Object}: When nodeGo is run, the node.id is added as a key with the value being the url.

Schema:

{"<node.id>": "<url>"}

	masterPackageListFilename {String}: Default masterPackageList.json.
File name of the master package list used to check for commonly installed FE libraries.

	masterStaticFeFolder {String}: Default: __dirname/../front-end.
Location of the distribution (built) versions of the core master static files.

Contains uibuilderfe.js, uibuilderfe.min.js, uib-styles.css and an images folder containing some standard uibuilder images and ico files. Also a fallback index.html which will be served if your custom index.html page cannot be found.

Anything in the masterStaticFeFolder folder will be served on the ./ URL path.

	masterTemplateFolder {String}: Default: __dirname/../templates.
Location of master template folders (containing default front-end code).
Holds a set of master templates to use. These are copied over to the instance src folder when needed.

	me {Object}: Contents of uibuilder’s package.json file

	moduleName {String}: Default uibuilder. Module name must match this nodes html file.

	nodeRoot {String}: Default: RED.settings.httpNodeRoot. URL path prefix set in settings.js - prefixes all non-admin URL’s.

	nodeVersion {String}: What version of Node.JS are we running under? Impacts some file processing.

	packageListFilename {String}: Default packageList.json. File name of the installed package list.

	rootFolder {String}: Root folder (on the server FS) for all uibuilder front-end data.
Name of the fs path used to hold custom files & folders for all uib.instances of uibuilder.
Default: <userDir>/<uib.moduleName> or <userDir>/projects/<activeProjectName>/<uib.moduleName> if Node-RED projects are in use.

	sioUseMwName {String}: Default sioUse.js. Name of the Socket.IO Use Middleware.

	staticOpts {Object}: Default empty. Options to pass to static-serve. See ExpressJS docs for details [https://expressjs.com/en/resources/middleware/serve-static.html].

	version {String}: Current uibuilder module version (taken from package.json).

	deleteOnDelete {Object}: Array of instances that have requested their local instance folders be deleted on deploy - see html file oneditdelete, updated by admin api

	customServer {Object}: Definition for the optional custom ExpressJS server. Not used if the built-in Node-RED ExpressJS server is used.

/** Parameters for custom webserver if required. Port is undefined if using Node-RED's webserver. */
customServer: {
 /** Optional TCP/IP port number. If defined, uibuilder will use its own ExpressJS server/app
 * If undefined, uibuilder will use the Node-RED user-facing ExpressJS server
 * @type {undefined|number} If undefined, means that uibuilder is using Node-RED's webserver
 */
 port: undefined,
 /** @type {string} Node.js server type. ['http', 'https', 'http2'] */
 type: 'http',
 /** @type {undefined|string} uibuilder Host. sub(domain) name or IP Address */
 host: undefined,
},

	degitEmitter {Function}: Event emitter for degit, populated on 1st use. See POST admin API. Only used if an external template is loaded.

Other variables

	userDir {String}: The current userDir folder. RED.settings.userDir.

uibuilder Node Instance Variables

Each instance of the uibuilder node has the following variables.

From the admin Editor ui

	node.name {String}:

	node.topic {String}:

	node.url {String}: Default uibuilder. Used for both the URL of this instance and for
the filing system location of instance resources.

Advanced Settings

	node.fwdInMessages {Boolean}: Default false. Whether input messages will be automatically forwarded
to the output.

	node.allowScripts {Boolean}: Default false. Whether uibuilder will allow
input messages to send custom JavaScript code to the front-end. This could be
a potential security hole unless well controlled.

	node.allowStyles {Boolean}: Default false. Whether uibuilder will allow
input messages to send custom CSS style information to the front-end. This could be
a potential security hole unless well controlled.

	node.maxAge {Integer}: Default 0. How long (in seconds) should resources be cached for?

It is not advisable to go above 31536000 seconds (nominally a year) since browsers may not treat that consistently.

	node.copyIndex {Boolean}: Default true. Whether uibuilder will automatically
copy the template `index.[html|js|css] files to the source folder if they don’t exist.

	node.showfolder {Boolean}: Default false. Whether uibuilder will automatically create
an index page view showing the source files available. Turning this on in production would be
unwise as it would be a security issue. If turned on, resulting URL is <httpNodeRoot>/<node.url>/idx.

Security Related

	node.useSecurity {Boolean}: Default false. Whether to use uibuilder’s security architecture.

	node.tokenAutoExtend: Whether to use client ping messages (every 25-30 sec) to automatically extend the token lifespan.

	node.sessionLength {Integer}: Default 1.8e6. (1.8e6 milliseconds = 30*60000 = 30min). How long without the client sending a msg will it be until a login is automatically logged out.

Credentials

Credentials in Node-RED are node configuration settings that are stored encrypted in a separate json file from your flows. They are not exported when you export a flow.

	node.jwtSecret {String}: The secret used to sign/verify the JWT token.

Locally configured (not set in Editor)

	node.customFolder {String}: Default <uib.rootFolder>/<node.url>.
Name of the fs path used to hold custom files & folders for THIS INSTANCE of uibuilder.
Files in either the src or dist sub-folders are also served to the instance’s URL.
The dist folder will only be used if index.html exists in that folder.
Any resource names that clash with files in the <uib.rootFolder>/common/ or
./nodes/src/ folders will take preference ensuring local control is available.

	node.ioClientsCount {Integer}: How many Socket clients connected to this instance?

	node.rcvMsgCount {Integer}: How many msg’s received since last reset or redeploy?

	node.ioChannels {Object}: The channel names used for Socket.IO.
Default {control: 'uiBuilderControl', client: 'uiBuilderClient', server: 'uiBuilder'}.

	node.ioNamespace {String}: Default <httpNodeRoot>/<node.url>.
Make sure each node instance uses a separate Socket.IO namespace.
WARNING: This HAS to match the one derived in uibuilderfe.js.

Internals & Typedef

In addition, the node object has a number of other useful functions and properties.

Note that the file typedefs.js may have a more up-to-date version of this.

/** uibNode
 * @typedef {object} uibNode Local copy of the node instance config + other info
 * @property {String} uibNode.id Unique identifier for this instance
 * @property {String} uibNode.type What type of node is this an instance of? (uibuilder)
 * @property {String} uibNode.name Descriptive name, only used by Editor
 * @property {String} uibNode.topic msg.topic overrides incoming msg.topic
 * @property {String} uibNode.url The url path (and folder path) to be used by this instance
 * @property {String} uibNode.oldUrl The PREVIOUS url path (and folder path) after a url rename
 * @property {boolean} uibNode.fwdInMessages Forward input msgs to output #1?
 * @property {boolean} uibNode.allowScripts Allow scripts to be sent to front-end via msg? WARNING: can be a security issue.
 * @property {boolean} uibNode.allowStyles Allow CSS to be sent to the front-end via msg? WARNING: can be a security issue.
 * @property {boolean} uibNode.copyIndex DEPRECATED Copy index.(html|js|css) files from templates if they don't exist?
 * @property {String} uibNode.templateFolder Folder name for the source of the chosen template
 * @property {String} uibNode.extTemplate Degit url reference for an external template (e.g. from GitHub)
 * @property {boolean} uibNode.showfolder Provide a folder index web page?
 * @property {boolean} uibNode.useSecurity Use uibuilder's built-in security features?
 * @property {boolean} uibNode.tokenAutoExtend Extend token life when msg's received from client?
 * @property {Number} uibNode.sessionLength Lifespan of token (in seconds)
 * @property {boolean} uibNode.reload If true, notify all clients to reload on a change to any source file
 * @property {String} uibNode.jwtSecret Seed string for encryption of JWT
 * @property {String} uibNode.customFolder Name of the fs path used to hold custom files & folders for THIS INSTANCE
 * @property {Number} uibNode.ioClientsCount How many Socket clients connected to this instance?
 * @property {Number} uibNode.rcvMsgCount How many msg's received since last reset or redeploy?
 * @property {Object} uibNode.ioChannels The channel names for Socket.IO
 * @property {String} uibNode.ioChannels.control SIO Control channel name 'uiBuilderControl'
 * @property {String} uibNode.ioChannels.client SIO Client channel name 'uiBuilderClient'
 * @property {String} uibNode.ioChannels.server SIO Server channel name 'uiBuilder'
 * @property {String} uibNode.ioNamespace Make sure each node instance uses a separate Socket.IO namespace
 * @property {Function} uibNode.send Send a Node-RED msg to an output port
 * @property {Function=} uibNode.done Dummy done function for pre-Node-RED 1.0 servers
 * @property {Function=} uibNode.on Event handler
 * @property {Function=} uibNode.removeListener Event handling
 * @property {Object=} uibNode.credentials Optional secured credentials
 * @property {Object=} uibNode.z Internal
 * @property {Object=} uibNode.wires Internal. The wires attached to this node instance (uid's)
 *
 * @property {boolean} uibNode.commonStaticLoaded Whether the common static folder has been added
 * @property {boolean} uibNode.initCopyDone Has the initial template copy been done?
 */

Functions/Methods

Module level

	log: Default RED.log. Logging functions.

	app: Default RED.httpNode. Reference to the ExpressJS app.

	io: Reference to the Socket.IO server.

	nodeInstance: The function passed to the node registerType function.

Instance level

	ioNs: Reference to Socket.IO namespace used for the instance.

	nodeInputHandler: Function that handles incoming messages for a uibuilder instance.

Utility Classes

	UibWeb (nodes/web.js) - A singleton class that manages the interactions with ExpressJS and so provides all of the web server capabilities.

	UibSockets (socket.js) - A singleton class that manages the interactions with Socket.IO and so provides all of the communications between Node-RED and front-end code.

?> Note that a singleton class is one that can only be instantiated once. Thanks to the way that Node.js’s require function works, whenever a singleton class is required, the same instance will always be used.

Utility Functions

	nodes/tilib.js - Contains generic utility functions that do not rely on Node-RED.

	nodes/uiblib.js - Contains utility functions specific to uibuilder that require Node-RED and related classes, objects and data.

Admin API’s

TBC

 title: Documentation for the modern, modular front-end client uibuilder.esm.js and uibuilder.iife.js description: > This is the new uibuilder front-end library initially introduced in v5.1. It provides socket.io message connectivity to and from Node-RED, simplified message handling and a simple event handler for monitoring for new messages along with some helper utility functions. It also allows data-/configuration-driven interfaces to be created from JSON or Node-RED messages. IIFE (UMD) and ESM builds of the client are provided. created: 2022-06-11 14:15:26 lastUpdated: 2023-01-28 15:41:10

title: Documentation for the modern, modular front-end client uibuilder.esm.js and uibuilder.iife.js
description: >
This is the new uibuilder front-end library initially introduced in v5.1. It provides socket.io message connectivity to and from Node-RED, simplified message handling and a simple event handler for monitoring for new messages along with some helper utility functions. It also allows data-/configuration-driven interfaces to be created from JSON or Node-RED messages. IIFE (UMD) and ESM builds of the client are provided.
created: 2022-06-11 14:15:26
lastUpdated: 2023-01-28 15:41:10

Moved

 title: Developer documentation for the uibuilderfe.js library description: > This is the uibuilder front-end library. It provides socket.io connectivity, simplified message handling and a simple event handler for monitoring for new messages along with some helper utility functions. created: 2019-05-25 19:05:00 lastUpdated: 2022-04-02 16:44:14

title: Developer documentation for the uibuilderfe.js library
description: >
This is the uibuilder front-end library. It provides socket.io connectivity, simplified message handling and a simple event handler for monitoring for new messages along with some helper utility functions.
created: 2019-05-25 19:05:00
lastUpdated: 2022-04-02 16:44:14

For user documentation, please refer to the Working with the uibuilderfe Library page.

ToC

	ToC

	Startup

	Events

	Variable Handling

	Public Variables

	Externally Writable (via .set method, read via .get method)

	Externally read-only (via .get method)

	Private Variables

	Public Methods

	Private Methods

Startup

In order to use the front-end library for uibuilder, you must call the start function: uibuilder.start().

Details are on the Working with uibuilderfe page.

Events

uibuilderfe has its own, simple, event handling system. This lets you “subscribe” to an event with an onChange function that is executed automatically when the event fires.

The publicly available events are listed on the Working with uibuilderfe page.

Variable Handling

All public variables must be accessed from front-end code using the get function.

All public variables must be changed from front-end code using the set function.

Internally to the library, all variable access should be via self.get() and self.set(). This is to ensure that the event system is triggered when setting.

Public Variables

Externally Writable (via .set method, read via .get method)

	allowScript {boolean} [true] Allow incoming msg to contain msg.script with JavaScript that will be automatically executed

	allowStyle {boolean} [true] Allow incoming msg to contain msg.style with CSS that will be automatically executed

	removeScript {boolean} [true] Delete msg.code after inserting to DOM if it exists on incoming msg

	removeStyle {boolean} [true] Delete msg.style after inserting to DOM if it exists on incoming msg

	autoSendReady {boolean} [true] If true, a REPLAY control message is sent once the client receives a “client connected” control message from the server.

Externally read-only (via .get method)

It is very rare, if ever, that you will need to manually get any of these apart from authData. It is better to use an onChange function that fires whenever they change.

	authData {Object} Standard object containing details of the (to be) authorised user id. uibuilder may add metadata to this object on logon. For example, an expiry timestamp or message-of-the-day

	clientId {string} Client UUID set by uibuilder (a client is a browser window).

	cookies {Object} Parsed cookies set by uibuilder (and possibly other things on the same server).
uibuilder uses 3 cookies: uibuilder-namespace, uibuilder-webRoot, and uibuilder-client-id.

	ctrlMsg {Object} Copy of last control msg object received from sever

	debug {boolean} [false] Do not set directly. Set using uibuilder.debug(true/false). Query using uibuilder.debug().

	ioConnected {boolean} [false] Whether or not Socket.IO is connected to Node-RED so that messages can be exchanged.

	isAuthorised {boolean} [false] Whether or not the client has been authenticated and authorised to send/receive data.

	moduleName {string} [’uibuilder’] The module name in use, uibuilder. Must match the module name in use on the server node.

	msg {Object} Copy of the last standard message received from the server

	msgsCtrl {integer} Track number of control messages received from server since page load

	msgsCtrlSent {integer} Number of control messages sent to server since page load

	msgsReceived {integer} Number of messages received from server since page load

	msgsSent {integer} Number of messages sent to server since page load

	sentCtrlMsg {Object} Copy of the last control message sent via uibuilder.send()

	sentMsg {Object} Copy of last standard msg object sent via uibuilder.send()

	serverTimeOffset {null|number} [null] Difference in hours between the Node-RED servers time and the browser time. Useful if you need to process date/time values from the server. The uibuilder node sends a timestamp in control messages so just reloading the page will force an update.

	version {string} The version number of the uibuilderfe library.

These are unlikely to be needed externally but can be accessed:

	ioChannels [{control: ‘uiBuilderControl’, client:’uiBuilderClient’, server:’uiBuilder’ }]

	ioNamespace [calculated] The socket.io namespace. Must match that of the node instance you want to talk to. Tries to calculate automatically based on the hosting web pages URL. However, can be overridden using the options object in uibuilder.start()

	ioTransport [[’polling’, ‘websocket’]]

	loaded {boolean} Are all browser resources loaded?

	retryFactor [1.5] Starting delay factor for subsequent reconnect attempts

	retryMs [2000] Starting retry ms period for manual socket reconnections workaround

	timerid [null] Holder for the socket reconnection timer

Private Variables

These are only accessible from within the library.

	events Holds an array of event callbacks for the event management system

	storePrefix Used by the internal setStore function to prefix any local storage keys helping prevent name clashes.

Public Methods

These are are available from user code via uibuilder.xxxx(). Many also have private equivalents.

The public methods are detailed on the Working with uibuilderfe page.

Note for get and set methods. These functions protect private variables and prevent the overwriting of internal function names.

Private Methods

These are not available to users via uibuilder.xxxx(). They can only be accessed from within the library. They are included here for library developers only.

	checkConnect Checks whether socket.io is connected to the socket server. If not, waits for a period and tries again. The wait period is controlled by 2 variables: retryMs and retryFactor. The wait period extends by the retryFactor for each attempt.

	emit Trigger an event

	ioSetup Sets up the Socket.io connection - called from the start public method. This allows user code to correct the auto-calculated socket.io namespace and path if the containing page is in a sub-folder or even on a different server.

	me

	newScript Handle incoming script attached to a message from Node-RED. Inserts to the DOM dynamically at the end of the <body>.

	newStyle Handle incoming styles (CSS) attached to a message from Node-RED. Inserts to the DOM dynamically at the end of the <head>.

	send Send a message back to the Node-RED server.

	set Set any internal variable. Also updates the event system.

	setIOnamespace Attempt to work out the correct socket.io namespace based on the current URL. Only works if the containing HTML page is in the root URI for the uibuilder instance. Otherwise, you have to override this manually - see the start public variable.

	setStore Write to browser local storage if possible. Uses the self.storePrefix variable to prefix any name to help avoid name clashes. Will output console error messages and return false but not crash if it cannot write to the store. If successful, returns true.

	uiDebug Controllable console output. If the debug variable is true, this will output to console.

	uiReturn Defines a set of callback style functions that are made available as external methods. See Public Methods above.

 title: Some complexities when using VueJS description: > While VueJS is a powerful and flexible front-end framework, it isn’t without its issues. This page outlines some things to be wary of. created: 2022-02-15 16:28:47 lastUpdated: 2022-02-15 16:54:48

title: Some complexities when using VueJS
description: >
While VueJS is a powerful and flexible front-end framework, it isn’t without its issues.
This page outlines some things to be wary of.
created: 2022-02-15 16:28:47
lastUpdated: 2022-02-15 16:54:48

Reactive Variables

A common mistake when working with Vue and uibuilder is to fail to understand that any variable you want to use in your HTML has to be pre-defined to the Vue app.

You do this by adding the variable name to the list in the data section of the Vue app’s configuration. Some examples are included in the Vue-specific uibuilder templates and examples.

Deep object reactivity

A related issue is to fail to understand that Vue attempts to heavily optimise reactivity (when a web UI has to update because a variable has changed). In order to do so, it will generally only dig as deep into a variable as you have pre-defined in your data section. So if you define data.fred as "hello" and then later turn it into a deep object (maybe containing something like foo.bar.bah.something), Vue is unlikely to recognise that it needs to update the UI.

To avoid this, try to define complex objects and arrays with a suitable template structure. However, if you can’t do that, Vue does provide a workaround. See [Reactivity in Depth (Vue2 Docs)[https://v2.vuejs.org/v2/guide/reactivity.html for details.].

Component Packaging

While Vue is very flexible, the downside of this is that there are several ways in which Vue component authors can package their components.

The laziest way is for the author to code as a .vue file complete with import statements. If you are lucky, they may provide some documentation on how to build that into final code but often they make the assumption that you already know how to do that.

At the other extreme, good authors will not only provide the source but several pre-built versions (as .js files) that can be loaded directly into your front-end code using a script tag in the HTML. They will auto-execute and even attach themselves to the Vue app so that you don’t need to declare them. If you find a dist folder in the library, you are probably in luck. bootstrap-vue is a good (complex) example of this approach which is one of the reasons it made it into common use with uibuilder in comparison with otherwise equivalent libraries.

In between these two extemes are various other, often confusing, options rarely helped as they often are missing good documentation. Some authors may pre-build .js files but in a way that requires them both to be referenced as script tags in your html file and declared to Vue as a component.

Others still will present as .vue files that do not use import statements and may be loaded using http-vue-loader [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/Dynamically-load-.vue-files-without-a-build-step].

One possible alternative workaround in some cases is to use the Skypack CDN [https://docs.skypack.dev/]. This not only gives you access to any published library without needing to install it using uibuilder’s library package manager (though instead it requires a live Internet connection) but it also allows you to work around some of the build limitations.

Unfortunately, even for experienced users, what approach is required is not always obvious.

 title: Special VueJS component handling in uibuilderfe description: > For a while, VueJS along with bootstrap-vue were the default frameworks supplied with uibuilder. As such, a few extra handlers were build into the uibuilderfe library. This page describes those features. created: 2020-12-11 16:38:00 lastUpdated: 2022-01-30 21:40:57

title: Special VueJS component handling in uibuilderfe
description: >
For a while, VueJS along with bootstrap-vue were the default frameworks supplied with uibuilder.
As such, a few extra handlers were build into the uibuilderfe library. This page describes those features.
created: 2020-12-11 16:38:00
lastUpdated: 2022-01-30 21:40:57

Note that these do not impact the use of uibuilder with other (or no) frameworks and in those cases, the extra features will do nothing and won’t get in the way.

	“Toast” Notifications

	Message schema

	Example

	Discover a Vue components capabilities

	Message schema

	Control Vue components direct from a Node-RED message

	v-bind="objAllProps"

	Example

	HTML

	JavaScript

	Msg

	Dynamically change components

	Alternative no-code solution

	Message schema

“Toast” Notifications

!> From uibuilder v5, toasts are also available if Vue and bootstrap-vue are not in use. See the pre-defined messages page for details.

This feature allows you to send a msg with standard properties that will result in a pop-up notification appearing in the front-end user interface.

No front-end code is required for this to work. However, you can also access the feature from your front-end code should you wish to do so.

This feature requires bootstrap-vue to be loaded.

See the Toasts documentation for bootstrap-vue [https://bootstrap-vue.org/docs/components/toast]
and the Toasts documentation for bootstrap [https://bootstrap-vue.org/docs/components/toast]
for more details in the use of notifications.

Note that toasts will stack so that multiple can be visible.

Message schema

This is the structure of the msg to send through the uibuilder node in Node-RED.

{
 "_uib": { // Required. VueJS Component data
 "componentRef": "globalNotification", // Required.
 // options object is optional. Options are passed directly to the bootstra-vue `<toast>` component.
 // These are examples only.
 "options": { // all of the entries are optional.
 // Creates a title section above the content that is highlighted
 "title": "This is the <i>title</i>",
 // Main message content (appears after any payload). May contain HTML.
 "content": "This is content in addition to the payload",
 // Default false. If true stops auto-Hide.
 // Click on the close button (BV) to remove the toast.
 // For non-BV, click on box to clear it or on background to clear all.
 "noAutoHide": true,
 // 5000 by default, how long the message stays on-screen. Hover over message to pause countdown.
 "autoHideDelay": 1500,
 // Optional colour variant. error (danger), warn (warning), info, primary, secondary, success
 "variant": "info",

 // BV Only. Default display is solid, set this to false to make the message semi-transparent.
 "solid": true,
 // BV Only. New message appears above old by default (false), change to true to add to the bottom instead.
 "append": true,
 // BV Only. If present, the whole message is turned into a link. Click takes the client to the URL.
 "href": "https://bbc.co.uk",
 // BV Only. Controls where on the page the toast appears. Several standard locations are available.
 // default is top-right. Custom positions can be set by including a <toaster> element in your HTML.
 "toaster": "b-toaster-top-center",
 // For BV, more options are available. @see https://bootstrap-vue.org/docs/components/toast
 },
 },

 // Optional. Will be added to the notification message (content). May be HTML.
 "payload": "<any>",

 // Optional. ID of client (from Socket.IO) - msg would only be sent to this client.
 "_socketId": "/extras#sct0MeMrdeS5lwc0AAAB",
}

Example

{
 "componentRef": "globalNotification",
 "options": {
 "title": "<h4>Notification <u>Title</u></h4>",
 "content": "Optional. A string. Will appear second in the resulting pop-up. Can be HTML.",
 "noAutoHide": true
 }
}

Discover a Vue components capabilities

This allows you to send a msg from Node-RED that results in an output msg showing what
properties can be set or controlled in the specified Vue component. This information
can then be used to craft messages for the next feature.

Message schema

{
 "topic": "Optional. Can be anything",
 // Required
 "_uib": {
 "requestDetails": true, // Required.
 "componentRef": "refName", // The ref attribute on the component instance to target
 }
}

Control Vue components direct from a Node-RED message

Instead of the following feature, it is better to make use of the following native VueJS features.
However they do require a little more code.

	v-bind object

	Dynamic components

v-bind="objAllProps"

Using the v-bind attribute lets you pass a single JavaScript object who’s properties map to the props
supported by the component. This lets you keep your HTML super-simple while letting Node-RED do the heavy lifting.

Also note that you can add arbitrary attributes [https://vuejs.org/v2/guide/components-props.html#Non-Prop-Attributes] to the rendered component this way.

See Passing the Properties of an Object [https://vuejs.org/v2/guide/components-props.html#Passing-the-Properties-of-an-Object] in the VueJS docs for more details.

I will try to add a uibuilder function to make this simpler in a future release.

Example

HTML

<!doctype html><html lang="en"><head>
 <link type="text/css" rel="stylesheet" href="../uibuilder/vendor/bootstrap/dist/css/bootstrap.min.css" />
 <link type="text/css" rel="stylesheet" href="../uibuilder/vendor/bootstrap-vue/dist/bootstrap-vue.css" />
 <link type="text/css" rel="stylesheet" href="./index.css" media="all">
</head><body>

 <div id="app">
 <!-- Note the use of the raw v-bind. alert1props has to be an Object with prop names matching the component props -->
 <b-alert ref="alert1" v-bind="alert1props">Default Alert</b-alert>
 </div>

 <!-- Dev versions, please use minimised versions for production use -->
 <script src="../uibuilder/vendor/socket.io/socket.io.js"></script>
 <script src="../uibuilder/vendor/vue/dist/vue.js"></script> <!-- dev version with component compiler -->
 <script src="../uibuilder/vendor/bootstrap-vue/dist/bootstrap-vue.js"></script>
 <script src="./uibuilderfe.js"></script>
 <script src="./index.js"></script>

</body></html>

JavaScript

new Vue({
 el: '#app',
 data: {
 alert1props : {},
 },
 created: function() {
 uibuilder.start()
 // Use the following syntax if you want to use uibuilder's Vue extensions (see the no-code solution)
 //uibuilder.start(this) // Single param passing vue app to allow uibuilder Vue extensions to be used.
 }, // --- End of created hook --- //

 mounted: function(){
 self = this // Keep a reference to `this` in case we need it for more complex functions

 // Handle incoming messages from Node-RED
 uibuilder.onChange('msg', function(msg){
 if (msg.topic === 'alert1props') {
 // Make sure we can handle new as well as updated properties
 Object.keys(msg.payload).forEach(key => {
 // Make sure that even new properties are reactive
 vueApp.$set(vueApp.alert1props, key, msg.payload[key])
 })
 }
 })
 } // --- End of mounted hook --- //

}) // --- End of app1 --- //

Msg

{
 "topic": "alert1props",
 "payload": {
 "show": true,
 "variant": "primary",
 // Adds an extra attribute to the resulting HTML
 "title": "Hover over the alert area to see this"
 }
}

Dynamically change components

Using the VueJS native <component> component, you can specify the template component to be rendered at runtime and can dynamically change the template.

See Dynamic Components [https://vuejs.org/v2/guide/components.html#Dynamic-Components] in the VueJS docs for more details.

Alternative no-code solution

WARNINGS:

	Does NOT work with all Vue components - See the experimental module uibuilder-vuejs-component-extras [https://github.com/TotallyInformation/uibuilder-vuejs-component-extras] for some example components that do work.

	This only works if you have NOT specified v-bind="someObj" in the HTML.

	It generates [Vue warn] messages in development mode as we are doing things that Vue doesn’t really like.

	It most likely has edge-cases that will error. Please raise as issues if you find any.

This feature allows you to send a msg from Node-RED to uibuilder that is received in
the front-end and passed directly to a component instance.

No front-end code is required for this other than adding a ref attribute to the
component instance and changing uibuilder.start() to uibuilder.start(this)

Message schema

{
 "topic": "Optional. Can be anything",
 // Required
 "_uib": {
 // Required. The ref attribute on the component instance to target
 "componentRef": "refName",
 }
}

 title: A first-timers walkthrough of using uibuilder description: > If you haven’t used uibuilder before, it can be a little confusing as it brings together concepts from several different worlds. This walkthrough takes you from nothing to a basic data-driven web page. created: 2021-09-24 11:02:56 lastUpdated: 2023-02-12 02:25:49

title: A first-timers walkthrough of using uibuilder
description: >
If you haven’t used uibuilder before, it can be a little confusing as it brings together concepts from
several different worlds. This walkthrough takes you from nothing to a basic data-driven web page.
created: 2021-09-24 11:02:56
lastUpdated: 2023-02-12 02:25:49

Like uibuilder itself, this walkthrough may look complex. But you should bear in mind that if you follow the 7 steps in the How to get started section, that is basically it.
The rest starts to unpack some of the things that you can then do with uibuilder and how to do them. Please consider them as additional walkthroughs.

What is uibuilder

Node-RED’s Dashboard and uibuilder are both different approaches to the same use-case. How to present data to users in a web browser tab and get information back from them into Node-RED. Remembering that the users browser and the Node-RED server are completely different environments and may be on different devices.

We refer to this as a “data-driven web application”.

uibuilder was created in order to provide Node-RED users with a flexible alternative to the Dashboard.

Dashboard is extremely simple to start using and great for doing relatively straight-forward UI’s very quickly. However, if you want to do more complex things, you quickly hit the brick-wall that is common with many frameworks. Suddenly things go from being simple to very complex.

uibuilder takes the opposite approach to Dashboard. Its main purpose is to be a foundation on which you can build whatever you like, however you like.

It does the complex background tasks for you and then gets out of the way.

uibuilder is a bridge between the Node-RED server and any connected clients (web browser tabs). Each browser tab pointing at the same uibuilder instance is a client and you can have many clients running from 1 browser, 1 device/many browsers or different devices - however you like.

How to get started - 4 steps to a data-driven web app

It may look complex, but really it isn’t. 😊

	Install node-red-contrib-uibuilder via Node-RED’s “Manage palette” menu.

	Add a new flow consisting of: inject -> uibuilder -> debug nodes connected in that order.
Add debug nodes to both of the output ports of the uibuilder node and set them both to show the full msg.

[!note]
You can import a working example using Node-RED’s import menu. Look in the examples section under uibuilder.

	Double-click on the uibuilder node and change it’s URL to uibtest. Click on the “Done” button.

	Click on the Node-RED “Deploy” button.

At this point, you now have a working web app! However, it doesn’t really show anything useful.

To improve that, re-open the node’s settings and change the Template drop-down to “No framework, IIFE client”. Then click the “Load & Overwrite Files” button.
You will get a warning that you should carefully read and if OK, click on the “OK, overwrite” button. Of course, if you don’t want to overwrite things, click on the cancel button (which is the default).

When you now revisit your web page, you will see that there is a bit more to it that will help you understand how to get things done. It has a title, sub-title and a form containing one input field with a button, and one custom button.

The rest is really now just testing.

	Re-open the uibuilder node and click on the “Open” button.

This opens a new browser tab showing you your web page. It has a title, a couple of buttons showing ways to get data back to Node-RED and a panel that shows the latest message sent from Node-RED.

	In the Editor, cancel the uibuilder node’s configuration panel and click on the inject node’s input button.
Then check your web page again.

You should now see a nicely formatted presentation of the message that the inject node sent to the uibuilder node which, in turn, passed it to your front-end client (the browser).

So at this point, you know that you can communicate from Node-RED to your browser. If this isn’t working, please see the troubleshooting section below.

	Now check the debug panel in Node-RED.

You should see several messages listed there. If you check, you will see that they all come from the second output port of the uibuilder node.

That port outputs uibuilder control messages. The messages tell you where they came from, either the server (the uibuilder node itself) or the client and what they represent (”Client Connect” for example).
You will also see a bunch of other properties that tell you things about the connected client browser tab.

Note that the top output port on the uibuilder node outputs messages from your client(s). There is a helper function in the uibuilder client library: uibuilder.send({...}) that sends a message back to Node-RED. The message must be structured the same as a Node-RED message. That is to say that it must be a JavaScript object containing properties with values. For example: { "payload": "Message from the client", "topic": "mymessage" }. See below for more information on working with the front-end code.

Remember that the Node-RED server and the browser client page run in completely separate contexts (even if they both run on the same device). The only communication between them happens because the uibuilder node talks to the uibuilder client library.

	Send information back to Node-RED from the browser

Now that you have seen how Node-RED can send a message to the browser, it is time to send a message back.

The loaded template has a FORM pre-defined. You can enter data into the form and press the “eventSend” button. Check out the debug panel in the Node-RED editor and you will see a new message there. Hover over it to see that it came out of the top port of the uibuilder node. This is the standard message port. Messages you send from the browser appear here.

Check the content of the message and you will see that it contains a msg._ui property with lots of pre-defined data. That includes the input from the form. This uses the helper function uibuilder.eventSend(event). This function makes it extremely easy to send useful information back to Node-RED simply by attaching it to an HTML event such as a button click or input field change.

You now have a fully working uibuilder configuration with a web page and have seen how to send data between Node-RED, the browser, and back.

Finding and editing your front-end code

Now that you have the basics running, it is time to look at the front-end code. The important points to remember are:

	The code is completely standard web code using HTML, CSS and JavaScript.

	There is a JavaScript client library, uibuilder.iife.min.js, that provides the magic connections between the front and back ends. A second library called socket.io-client is also loaded for you in the background, it enables the communications to/from Node-RED, you don’t need to load this yourself.

See the uibuilder components overview for a diagram of how the different parts of uibuilder work together with Node-RED and the browser.

There are actually 3 uibuilder client library versions. The one above should be the most commonly used. uibuilder.min.esm.min.js is used if you want to use ES Module [https://hacks.mozilla.org/2018/03/es-modules-a-cartoon-deep-dive/] style coding. There is an older library, uibuilderfe.min.js but this is no longer being actively updated (as of uibuilder v6+) and should be replaced where possible.

	All of the front-end code for a specific uibuilder node (an “instance”) is stored in a single folder (with a number of sub-folders).

There are two ways to look at and change the content of an instance’s root folder (which, remember, sits on the Node-RED server).

	Use the built-in “Edit Files” button in the uibuilder Editor panel.

This is best for quick edits and maybe if your server is remote and you do not have easy access to files on it normally.
However, it is not the best experience as your code starts to get longer and it does not let you keep multiple files
open.

	Click on the “Edit Files” button

	Select a file to edit from the drop-down. Noting that you can also change which folder to look in.
The folder called “root” is the root folder for this node instance and should contain a package.json file, src and dist folders.
The folder called src will be the one you will most commonly use unless you are using a more complex template and framework such as Svelte.

See the web-app workflow documentation for more details about the instance folders, what they mean and how to make use of them.

	In the index.html file, change the the line that says <h1>uibuilder Modern Client Example</h1> to <h1>My Data-Driven Web App</h1>.

	Click the “Save” button.

	Reload the web page and see that the title has changed.

	Now click on the “Reload connected clients on save” check-box in the Editor. Make another change to the HTML, click save and note that the page auto-reloads.

	Use a code editor.

This is best if you are already familiar with writing code for the browser. It is also best if your code is going to be at all complex.

To use this approach, you need access to the folder on the server’s filing system that contains the root folder for the instance.

[!tip]
The server location for your code is shown on the node’s “Core” tab.

Each uibuilder node instance has a url setting. This has to be unique for the instance of Node-RED. It is used as the identifier for the instance. That includes naming the folder that contains the front-end code. For example, if you use the URL from the first part of the walkthrough, the folder would be ~/.node-red/uibuilder/uibtest/.

Editing your code and the tools to use are beyond this walkthrough however the web-app workflow page has some additional details.

Choosing a template

Now that you know where things are, you can decide whether you want to completely do the coding yourself or if you would like some basics from a Template.

A uibuilder Template is the complete front-end folder for an instance. It contains a package.json file in the root and at least a src sub-folder containing index.html and index.js.

There are a few built-in templates that you can select from along with an option to load templates from GitHub repositories.
The default “Blank” template uses no front-end framework, it is pure, minimal HTML/JavaScript and can be used as a clean palette to create your own code or, in conjunction with the zero-code nodes uib-element and uib-update, used for dynamic views.

To change templates - firstly note that changing templates will completely wipe changes to key files from the instance folder. So if you want to keep anything, make sure that you copy or rename files so that they are not overwritten.

Also note that some of the templates require 3rd-party packages to be pre-installed. Some of the templates require vue@2 (VueJS v2) and bootstrap-vue for example. You need to install these using uibuilder’s package manager. That will be covered in a separate walkthrough.

Changing templates:

	Open the uibuilder Editor panel.

	Click on the “Template Settings” title.

	Choose a template from the drop-down.

	If choosing an external template, enter the name as instructed.

	Click on the “Load & Overwrite” button.

	Click on the “OK, overwrite” button in the warning dialog. Note that you can cancel up to this point and nothing will be harmed.

	Reload your web page to see the new page template.

Notes:

	When you reload the web page, any existing data on the page is lost. You can either use the uib-cache node (Using the Cache Node) in Node-RED or the client-side uibuilder.restoreHtmlFromCache() function if you have been saving the html updates locally (HTML/DOM cacheing [http://red.localhost:1880/red/uibuilder/docs/#/client-docs/functions?id=htmldom-cacheing]).

See the example flows and WIKI entries about “Caching” to see how to pre-load data into new/reloaded pages from Node-RED.

	The various templates along with some of the examples show you the different ways to work with the uibuilderfe
library depending whether you are using a front-end framework library or not.

	There is an external template on GitHub called TotallyInformation/uib-template-test [https://github.com/TotallyInformation/uib-template-test].
You can use this to see the kinds of things that need to be in a template. Templates are likely to continue to evolve and in the future are likely
to gain a standard way to have an example flow, include build-steps and more. By all means, create your own templates and share them with the community.

Displaying data from Node-RED

Send data from Node-RED to your clients in 1 or more standard messages into your uibuilder node. The node sends the whole msg to your front-end.

In your front-end code, you will generally use a uibuilder.onChange('msg', (msg) => {...}) function. Inside the function, take the contents of the msg and assign it to variables that you have pre-defined in your Vue app data section so that they are responsive. See the Event Handling docs for more details.

Alternatively, you can use a uib-update node to do the same thing from within Node-RED without any code being needed.

Example

Assuming some HTML like <div id="mything"></div>, you can update the content of that div with the following JavaScript:

uibuilder.onChange('msg', (msg) => {
 // You don't have to filter by topic but it can be helpful
 if (msg.topic === 'update mything') {
 // $(...) is a uibuilder helper function that selects an HTML element based on a CSS Selector
 // Use innerHTML if your payload includes additional HTML formatting
 $('#mything').innerText = msg.payload
 }
})

Sending data to Node-RED

To send data back to Node-RED, use one of the Message Handling functions. Both of these will output a message from the topmost output port of your uibuilder node. uibuilder node’s also have an advanced setting that includes additional details in the output about the client. That can be useful for custom authentication and authorisation flows or splitting flows by source page, etc.

uibuilder.send(msg)

Sends a custom message. The message just includes what you send (plus a msg._uib object with additional client details if turned on in the node settings).

uibuilder.send(payload: "Hi there from the client", topic: "from the client")

uibuilder.eventSend(event)

Can be attached to an HTML event such as a button click (onclick) or input field value change (onchange). If embedded in a form element (see below), the form’s inputs will be automatically included in the msg._ui property. Any data-* attributes on the source element are included in the payload as well as in msg._ui.attribs.

<form>
 <div><!-- Accessible form element -->
 <label for="quickMsg">Quick Message:</label>
 <!-- onchange optional, saves previous value of field -->
 <input id="quickMsg" value="A message from the browser"
 onchange="this.uib_newValue = this.value"
 onfocus="this.uib_oldValue = this.value"
 >
 </div>

 <div>
 <button onclick="uibuilder.eventSend(event)"
 data-type="eventSend" data-foo="Bah"
 >eventSend</button>
 </div>
</form>

Example output
[image: _images/eventSend-return-data.jpg]Example output

No-code UI’s

uibuilder v6.1 introduces new features to enable the creation of web pages dynamically without the need to code any HTML or JavaScript. Two nodes uib-element and uib-update are used for this.

uib-element takes in simple data structures and outputs msg._ui configuration data that the client library can re-hydrate straight into HTML. Several simple options such as tables and lists are available in uibuilder v6.1, additional elements and structures will be made available in future versions.

uib-update allows simple updating of specific on-page elements. Outputs from both nodes can be chained together and can be sent direct into a uibuilder node or via a uib-cache node.

The output msg._ui configuration data is a defined standard and you can further process that data to enhance it before sending.

uibuilder v6.2 and beyond will have the ability to save this data and to re-hydrate to HTML within Node-RED so that you can use these features to create HTML for use in other tools and for static page delivery (very efficient).

Low-code UI’s

The data that uib-element outputs is a format that you can use in your own flows in Node-RED and even in front-end code if desired. It describes a set of HTML UI elements but does not need you to actually write HTML code. The configuration schema is very flexible and even allows you to load configuration data, HTML, scripts, and new ECMA Modules/Components from external files.

The schema and the UI creator functions built into the front-end client are specifically designed to work with current and future HTML standards in order to avoid the kinds of issues commonly encountered when using 3rd-party front-end frameworks (e.g. major version changes forcing rewrites of all of your tooling). So ES Modules, ECMA Components, and future ECMA versions should all be supported.

It will also work with any framework that does not force you to pre-define all of your UI. Svelte is an excellent example of a well-behaved front-end framework that works nicely with this approach.

Troubleshooting

Software versions

uibuilder v6 requires Node.js v14+, Node-RED v 3+ and for the browser, an ES6 (ECMA2015) capable version (Not IE. Virtually all modern browsers over the last few years but for Apple mobiles has to be iOS 12+). Some of the newer features need a browser capable of ECMA2019 which should be virtually every modern browser.

Without these, you are likely to hit issues with compatibility or outright error. Please contact the author if you need something outside of these specifications though as it is possible that something could be put together.

This w3schools JavaScript versions page [https://www.w3schools.com/js/js_versions.asp] shows which browsers support which versions of JavaScript.

For the VueJS templates and examples, VueJS v2 (not v3) needs to be installed along with the bootstrap-vue package. You can install v2 by simply giving the name vue@2 to the library manager.

A white page

This usually indicates that an error has crashed whatever front-end framework you are using. In the browser, open the Developer Tools and look at the Console tab for errors.

An ugly page

Assuming you didn’t design your page that way, this generally means that you have made an error in one of the URL’s in your index.html page and so a resource file hasn’t loaded. Check the Developer Tools Console and Network tabs for “404” errors (page not found).

Check uibuilder’s “uibuilder details” page (button on any uibuilder node in the Editor) to see the exact URL’s you should be specifying.

Socket.IO errors

If your browser is reporting an error in Socket.IO, the most likely reason is that you are serving your front-end code from a different web server and not from Node-RED. In that case, see the documentation for details about the correct function and parameters you need in your front-end javascript to get round this issue. This may occur if you are developing with a front-end framework that includes its own development server.

Otherwise, the next most likely reason is that you are using a web proxy such as NGINX, Caddy, Apache, etc and have forgotten to proxy the websocket connections. There is an example for NGINX in the documentation.

After that, the most likely explanation is that you have a network issue between your client and the Node-RED server. That is beyond the remit of this walkthrough.

 title: Creating a web app using uibuilder and Node-RED description: > Some recommendations on how to use uibuilder to create data-driven web applications. created: 2022-01-05 14:36:24 lastUpdated: 2023-01-04 16:50:42

title: Creating a web app using uibuilder and Node-RED
description: >
Some recommendations on how to use uibuilder to create data-driven web applications.
created: 2022-01-05 14:36:24
lastUpdated: 2023-01-04 16:50:42

While it does a few other things to help as well, uibuilder primarily provides these services:

	An easy way to manage and serve up front-end supporting libraries (e.g. VueJS or REACT).

	An easy way to exchange structured data between Node-RED and your front-end app.

	Easy ways to create, remove and amend HTML elements on your web page.

As such, it allows you to use any (or no) front-end libraries and whatever tooling you like.

Driving a dynamic, data-driven UI - no frameworks needed!

From around uibuilder v5 or so, uibuilder now really reduces or even removes the need to use a front-end framework such as Vue or REACT. These are still useful for really complex UI’s and processing but for the majority of uses, they can be just a millstone that you end up fighting more than they help.

The main thing to learn in order to be able to ditch heavy frameworks is how to select HTML elements using CSS Selectors [https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors]. uibuilder provides a very easy way to grab a reference to any HTML element via a selector (${'selector'}).

uibuilder also provides tools to dynamically create, amend and remove HTML elements direct from node-red (the uib-element node available from uibuilder v6.1+ and configuration-driven UI descriptor messages). Configuration data can even be loaded from an external JSON file and the same data can be used in your front-end code if you need to.

Where a front-end framework can still help

The main reason for still wanting a front-end framework such as Vue or REACT is to access the myriad of features, extensions and add-on’s that people have developed over the years.

Code Folders

The code for your uibuilder web app lives in and under a specific folder on your Node-RED server. You will need to understand where this lives if you want to use anything other than the Node-RED Editor panel for managing and editing your code.

Most things for uibuilder live under something we refer to as the uibRoot folder. This folder, by default, lives at <userDir>/uibuilder. Where <userDir> is normally ~/.node-red for default installations of Node-RED. The uibRoot folder can, however, be moved by changing the uibuilder.uibRoot property in your Node-RED settings.js file.

Each uibuilder node that you deploy, gets a sub-folder under uibRoot. That folder is named the same as the URL setting in the Editor panel. So a uibuilder node with a URL set to mytest will have its code folder at ~/.node-red/uibuilder/mytest for a default installation.

Within that instance root folder there will always be at least 3 things:

	A package.json file. This gives some basic meta-data for your app and also will hold references to any development libraries (see below for details).

	A src sub-folder. This holds the source code for your app. This is also the default location used to serve up your front-end code.

	A dist sub-folder. This is ignored unless you swap to it using the advanced setting in the uibuilder Editor panel.
You will use this folder if you need to “compile” or “build” your source code into something that the browser can understand (or for efficiency).

uibuilder from about v5.1+ is now able to serve up your front-end code from any sub-folder of the instance root folder.

Other folders you might see or use are:

	node_modules - this is the standard npm package folder and will be present if your instance needs any supporting packages for development.

	api - this will be present if you are defining an instance-level API to use with your code. API’s run on the Node-RED server. See the How to use Instance API’s page for details.

	scripts - A convenient folder to keep utility scripts that you may wish to run to get things done. Typically accessed by adding to the scripts property of the package.json file.

Code Editing

While you can edit code within the Node-RED Editor using the uibuilder configuration panel, this is only really useful for relatively simple editing tasks. Generally,
you will want to use standard web development tooling if your front-end code starts to get bigger.

My recommendation here is to use Visual Studio Code [https://code.visualstudio.com/] (VScode). Originally developed by Microsoft but now a fully open source community effort. It is free and very fully featured with many extensions to further help.

Even where your front-end code is on a remote server, VScode can help as Microsoft have provided some remote editing extensions.

Recommended Extensions

	ESLint [https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint] - This integrates the ESLint JavaScript linting (code checking) tool and is a MUST for good quality code. I
recommend using the “Standard JavaScript” configuration which is a set of very widely used standards for writing readable JS code.

	Remote Development [https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack] - a small set of extensions that enable remote editing.

It is also recommended to install an extension or pack dedicated to whatever front-end framework you are using. Such as the Vetur [https://marketplace.visualstudio.com/items?itemName=octref.vetur] extension for VueJS development.

Build Processes

If you want to use some code that browsers cannot natively understand or you want to make your code more efficient, you may want
to use a “build” process (occassionally and mistakenly called “compiling”).

To do this, you need a build tool. Common build tools are webpack [https://webpack.js.org/], Parcel [https://parceljs.org/] and Rollup [https://rollupjs.org/] though
there are many others as well. Some front-end frameworks such as Svelte [https://svelte.dev/] also have their own tools.

You will need to configure your build tool to use the src folder as input and the dist folder as output. The dist folder must contain at least an index.html file
which uibuilder uses as the default page to serve up.

To run a build step, you need to have installed and configured the appropriate tools. These should either be installed on your server as global (e.g. npm install -g xxxx),
or they must be installed into the instance folder (e.g. cd ~/.node-red/uibuilder/mytest && npm install -d xxxx).

Please see the Front-End Build Steps and Tools page for more details. Including a longer list of tools and some information on how to configure them.

Using a build development server

Many build tools and some front-end frameworks have “live servers” to support development. These automatically reload the page being developed
whenever something changes.

At present, only the Svelte development server will work correctly without you making some temporary changes to your front-end code.

For all other development servers, you will need to make the following changes:

	In index.html - replace the default ./xxxx and ../uibuilder/xxxx URL’s with ones that start with the correct Node-RED/uibuilder server. e.g. http://localhost:1880/xxxx.

	In indx.js - replace the uibuilder.start() with uibuilder.start({ioNamespace: 'http://localhost:1880/aa'}) (example) where the protocol, server name and port are your Node-RED/uibuilder server as above and /aa is the uibuilder node instances URL with a leading /. That is the Socket.io namespace.

Don’t forget to change these back when you are putting your code live. Though your live code will still work, it would be more fragile and would break if you change the server details.

It is also possible that you could automate these changes using the build tool. Using environment variables to tell the tool which url’s to use. If not, you could automate the whole process using a tool such as GulpJS [https://gulpjs.com/].

 title: Developer documentation for web.js description: > A singleton class that manages the interactions with ExpressJS and so provides all of the web server capabilities. created: 2021-06-27 21:36:00 lastUpdated: 2021-06-27 21:43:04

title: Developer documentation for web.js
description: >
A singleton class that manages the interactions with ExpressJS and so provides all of the web server capabilities.
created: 2021-06-27 21:36:00
lastUpdated: 2021-06-27 21:43:04

	TBC

TBC

 title: What makes a good Node-RED Dashboard framework? description: > Lays out what I think a good framework for building Node-RED dashboards would look like and what features it would have. created: 2021-09-17 09:28:09 lastUpdated: 2021-09-17 09:28:15

title: What makes a good Node-RED Dashboard framework?
description: >
Lays out what I think a good framework for building Node-RED dashboards would look like and what features it would have.
created: 2021-09-17 09:28:09
lastUpdated: 2021-09-17 09:28:15

Status: Incomplete

Feature Summary

	Communications between Node-RED and the front-end page and components

	Ability to define UI components that can:

	Be reused

	Be communicated with to/from Node-RED

	Can be incorporated into page layouts

	Can be written independently of the core

	Can be easily installed by Node-RED admins/editors using npm & the existing Palette Manager

	Can be used via code by developers AND via nodes for non-developers

	Easy, no-code layout screen builder tool

	Multiple pages. Not just multiple tabs.

	Back-end authentication and authorisation - plug & play extendable, custom extendable, session capable, self-service capable, security tested

	Front-end user authentication and authorisation helpers - Standard library for: A function and component for doing logon/logoff, extensible by configuration to allow for user metadata, a component for self-sign-up

	Some common components would be needed - these could be core or contributed but probably best as core:

	Page container

	Tabs container

	Card container (displays a card with other content within it)

	Dialogue box (modal and non-modal, options for buttons, rich content)

	Alert (auto-expire and manual clear, different categories)

	Basic chart

	Basic output (text, numbers, dates, times, …)

	Basic inputs (text, numbers, dates, times, passwords, extended text)

uibuilder Thoughts

Extension node

Alternatives:

	An alternative would be for the installation of a uib extension node to trigger a build step. But this would need default builds for all frameworks.

	Another alternative is to move instance config to a config node

	Registers config object: might define msg schema, width/ht or any other common props - probably contains instructions for the front-end to auto-load and attach to the appropriate framework app.

	Registers front-end code folder: contains front-end code that is made available to all uibuilder instances - allows uib extensions to cater for ANY front-end framework.

	Front-end code must be written in a way to self-execute

	Each Instance:

	Uses a uibuilder instance’s URL name - drop-down box for chosing.

	Has its own config

	When a client (re)connects to the matching instance of uib, it is sent the extension/component config in the initial connect control msg.
NB: uibuilderfe should probably dynamically load the appropriate code resources.

	Msgs sent to the instance are changed to match the appropriate schema and then sent to the front-end

On socket connect

	send cached

	Layout - page-width

	defined cards

 title: uibuilder Documentation description: > uibuilder provides a stand-alone web server that allows for interfacing with Node-RED, while giving you help and complete freedom to create custom web interfaces. created: 2019-06-16 16:16:00 lastUpdated: 2023-02-08 10:17:10

title: uibuilder Documentation
description: >
uibuilder provides a stand-alone web server that allows for interfacing with Node-RED, while giving you help and complete freedom to create custom web interfaces.
created: 2019-06-16 16:16:00
lastUpdated: 2023-02-08 10:17:10

It includes many helper features that can reduce or eliminate the need to write code for building data-driven web applications and user interfaces for Node-RED. [Here is a diagram(Link to diagram)]** that gives an overview of how the various uibuilder components work together.

All you need to start making use of uibuilder is a uibuilder node added to your flows. Select a suitable URL path and deploy. Then click on the “Open url” button to open the new page in a new tab.
Question - Is it A uibuilder node, OR does it always have to include THE node?

 title: A first-timers walkthrough of using uibuilder description: > If you haven’t used uibuilder before, it can be a little confusing as it brings together concepts from several different worlds. This walkthrough takes you from nothing to a basic data-driven web page. created: 2021-09-24 11:02:56 lastUpdated: 2023-02-12 02:25:49

title: A first-timers walkthrough of using uibuilder
description: >
If you haven’t used uibuilder before, it can be a little confusing as it brings together concepts from
several different worlds. This walkthrough takes you from nothing to a basic data-driven web page.
created: 2021-09-24 11:02:56
lastUpdated: 2023-02-12 02:25:49

Like uibuilder itself, this walkthrough may look complex. But you should bear in mind that if you follow the 7 (or is it 4?) steps in the How to get started section, that is basically it.
The rest starts to unpack some of the things that you can then do with uibuilder and how to do them. Please consider them as additional walkthroughs.

What is uibuilder

Node-RED’s Dashboard and uibuilder are both different approaches to the same use-case. How to present data to users in a web browser tab and get information back from them into Node-RED. Remembering that the users browser and the Node-RED server are completely different environments and may be on different devices.

We refer to this as a “data-driven web application”.

uibuilder was created in order to provide Node-RED users with a flexible alternative to the Dashboard.

Dashboard is extremely simple to start using and great for doing relatively straight-forward UI’s very quickly. However, if you want to do more complex things, you quickly hit the brick-wall that is common with many frameworks. Suddenly things go from being simple to ~~very~~ more complex.

uibuilder takes the opposite approach to Dashboard. Its main purpose is to be a foundation on which you can build whatever you like, however you like.

It does the complex background tasks for you and then gets out of the way.

uibuilder is a bridge between the Node-RED server and any connected clients (web browser tabs). Each browser tab pointing at the same uibuilder instance is a client and you can have many clients running from 1 browser, 1 device/many browsers or different devices - however you like.

It might be worth revisiting the [diagram here(Link to diagram)]

 <no title>

 Hi Julian,

I have gone through Readme and Walkthrough1, the results are attached.

There seems to be an error in the part where you start to modify the basic example, you say
<When you now revisit your web page, you will see that there is a bit more to it that will help you understand how to get things done. It has a title, sub-title and a form containing one input field with a button, and one custom button>.
I have noted in the text, but this isn’t the page loaded by the version I have, do I need to update/reload uibuilder?

I am concerned that you might think that I might be nit picking and trying to force my thoughts on you, that is not the case, you are welcome to refuse anything, I am pretty thick skinned and would not take offence. I am just using my experience and ‘thinking out loud’

I am trying to make the modifications with the not so experienced Newbie (like me!) in mind. Having written several manuals after converting ‘simple’ late ‘70s piece of equipment to run from Touch Screen interfaces and automatic recipes built from text files, I always found that you had to take simple steps to make users accept and adopt the system because ‘this isn’t how the machine used to work’ and the following ‘can’t we convert it back?’.

One way we did this was to break our manuals down into Chapters and sections. This does appear to be harder to do on Github. Don’t show them what they don’t need to know for a single lesson, it confuses them - let them want to learn with another simple step, eventually they can become ‘Zen Masters’ having led them down the path. I also found that simple illustrative examples helped, in this case a simple flow for each ‘Lesson’ to be learnt.

I kind of get the feeling that some of the stuff in Walkthrough1 is from older versions of uibuilder not that it is, just that you say ‘uibuilder v6.1 introduces new features to enable the creation of web pages dynamically without the need to code any HTML or JavaScript’, I get what you are saying, but <pedant>’I have just learnt all this and now you are saying I don’t need it, I give up!!’</pedant>. It might be better to add ‘new features that enable ‘. Then go into the lesson.

Terminology, I think I see you have linked some words to a ‘glossary’. Excellent!

A hierarchical structure seems to work when learning, at least for me, Walkthrough1, finish the page and link to the next session of learning/description, with other links that might be useful for this stage of learning.

I think a conversation might be good. You work, I don’t, so my time is not as precious. Maybe we make a time for some form of live conversation?

 title: The main uibuilder node description: > Usage and configuration. created: 2023-02-05 16:31:39 lastUpdated: 2023-02-05 16:31:46

title: The main uibuilder node
description: >
Usage and configuration.
created: 2023-02-05 16:31:39
lastUpdated: 2023-02-05 16:31:46

[!note]
This page is about configuring an individual uibuilder node in the Node-RED Editor. If you are looking for how to configure uibuilder as a whole, please refer to the Configuring uibuilder page.

A uibuilder node that has been added to a flow is configured using its Editor configuration panel. Open this by double-clicking on the node you want to configure. (Doesn’t this have to be installed to make uibuilder work?)

[!tip]
When setting up a new uibuilder node, you will note that you cannot change many settings until you have set the URL and deployed the change. This is to ensure that the node has the server folder to work with. Once the folder exists, you can make other changes.

The panel is split into several tabs: Core, Files, Libraries, and Advanced.

Core Tab

[image: ../_images/uibuilder-config-core.jpg]uibuilder node configuration panel >

This is the main tab.

URL

The URL field defines the last part of the URL for this uibuilder instance.

A URL of test will result in a full URL that looks something like http://localhost:1880/test. (Yours may look different depending on the configuration of Node-RED’s settings). (The full stop after 1880/test ‘could’ be misleading)

The Open button just below the URL will open this default location. The actual file that is opened is /test/index.html. (same again)

The URL MUST be unique across all URL’s whether they belong to uibuilder or not. The input box will not let you type an entry that already exists in another uibuilder instance. However, it cannot check all the possible URL’s Node-RED is capable of supporting so please take some care when choosing an appropriate name here.

Setting the httpNodeRoot property in settings.js will help avoid name clashes as will using a custom server for uibuilder (see below). (I nearly added ‘techno babble’, but you pre-empted me!!)

The URL also defines the folder on your server’s filing system where all of the front-end code will live. It creates a sub-folder under the <uibRoot> folder which is typically ~/.node-red/uibuilder but may be moved anywhere by using the uibuilder.uibRoot settings in your settings.js file.

If you have deployed the node with a specific name and then later change it, uibuilder will automatically rename the server folder as well. If you delete the node, uibuilder will offer to delete the folder but you may choose to keep it if you wish.

URL’s have some other requirements that must be met, if you don’t meet the requirements, you will see one or more errors listed underneath the field and you will not be able to press the “Done” button until they are corrected.

If copying and pasting a uibuilder node or a flow containing a node, upon pasting, the URL is reset to blank. Since this is an error, the node will be marked with a red triangle and attempting to deploy will give an error. (This is Node-RED default behaviour)

Buttons

The buttons below the URL field will each open a new browser tab. The Open button has already been described.

The uibuilder Details button opens a page showing the full configuration of uibuilder along with all of the admin and user-facing ExpressJS web server routes that have been mounted by all instances of uibuilder nodes.

The Instance Details button opens a page with a summary of the configuration and web routes for this instance.

The Docs button opens the local copy of this documentation.

Info panel

Under the buttons is the information panel. This shows you the detail for the webserver that uibuilder is currently using. This ensures that you know what URL prefix to use in front of the URL defined above.

Name and Topic

These are optional. If you set a Name, it will show in the icon in the flow along side the URL. This is the standard Node-RED name field.

The Topic string will be added to messages being sent to the front-end if the inbound message to the node does not contain a topic field. So consider it a default entry.

Template Settings

!>(—–This supposed to be here?) *(Changing the template overwrites existing files with the same names in your <uibRoot>/<url> server folder. So make sure you take copies before pressing the Load button if you don’t want to loose them.

uibuilder Templates let(s) you have a rapid prototype for your front-end code. The Templates load a complete set of front-end files along with a README and an npm style package.json file. This allows a template to be a complete working model, ready to go.

(is this up to date??) As at uibuilder v5, there are 4 built-in Templates plus the ability to load external templates from GitHub and elsewhere. More information on templates can be found in the Configuring uibuilder page and in the Creating Templates page.

Files Tab

tbc.

Libraries Tab

tbc.

Advanced Tab

tbc.

 Changelog Archive for v1

Changelog Archive for v1

Current major version changelog can be found in the root of this package: ../CHANGELOG.md.

v1.2.1

	FIXED File save wasn’t working due to a parameter error, now fixed.

v1.2.0

	CHANGED url property is now validated. It is required, it cannot be more than 20 characters long. It cannot be ‘templates’ (in preparation for a v2 improved template handling feature).

	CHANGED The admin API’s <adminurl>/uibfiles, <adminurl>/uibgetfile, <adminurl>/uibputfile and <adminurl>/uibindex now have parameter validation.

	CHANGED Code for file/folder locations, e.g. <userDir>/uibuilder improved. Made to use a single variable. In preparation for better support of projects (probably in v2 as that may be a breaking change).

	CHANGED Code comments improved, more use of JSDoc.

	CHANGED Default file name to be edited is changed to index.html rather than index.js as it is more likely to exist.

	CHANGED Improved the uibindex admin API, added additional details. Use the type parameter set to ‘json’ or ‘urls’ (lists the urls in use by all of the instances of uibuilder, used by the admin interface to ensure unique). The default is to return a web page containing details. Admin ui help text also updated to include the admin API’s.

	CHANGED Master template folder - files moved to sub-folder to allow for multiple master templates (e.g. VueJS as well as jQuery). In readiness for future changes.

	CHANGED General utility functions moved to a separate library, tilib.

	CHANGED New tilib function added getNpmRunScripts. Given a path, returns a list of available scripts from the package.json file in that path - or undefined if the file doesn’t exist. If the optional 2nd parameter is supplied, looks for a matching script name and returns the script text - or null if the script isn’t there. In preparation for adding npm processing (install, build, etc.).

	CHANGED Parametrised Master Template Folder. Preparation for more flexible template processing.

	FIXED ExpressJS app.use paths were not being removed on close processing.

Current Version Limitations

	There are currently no checks to prevent you losing changes to edits if you close the admin window.

	If you create sub-folders in your src folder, you will not be able to edit the files there.

v1.1.0

Please see Issue #43 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/43] For the design details for this release.

Current Version Limitations ~~As yet there are no parameter checks on the API calls so the following URL’s should never be exposed to potentially hostile environments (e.g. the Internet): <adminurl>/uibfiles, <adminurl>/uibgetfile, <adminurl>/uibputfile, <adminurl>/uibindex.~~ There are currently no checks to prevent you losing changes to edits if you close the admin window.

	NEW The node properties window in the admin UI now provides an “Edit Source Files” button. If clicked, the main properties are hidden and a file editor is shown. You can currently select any existing file in the src folder for the current instance and edit it. You can then save, reset or close the editor.

	It is still a little too easy to lose changes by loading a different file or closing the properties window, reloading the interface, etc. More work is needed on the UI to help prevent this.

	The delete button doesn’t currently work.

	NEW Add admin API’s and start of admin property ui for editing the front-end files in Node-RED.

	File list API (get /uiblistfiles) gets all files in the instances src folder and populates a select drop-down. File list is rebuilt every time the properties admin ui window is opened. Requires user to have uibuilder.read permissions.

	File read API (get /uibgetfile) reads the content of a file. Restricted to the node instances src folder. Requires user to have uibuilder.read permissions.

	File write API (post /uibputfile) writes the updated content of a file. Restricted to the node instances src folder. Requires user to have uibuilder.write permissions.

	NEW The node now tracks how many instances of uibuilder have been added to your flows. It tracks by ID and retains the url used. In a future release, this will be used to ensure that unique URL’s are used.

	NEW uibuilder index page (only prototype for now, not fully formed)

	Index page API (get /uibindex) lists all of the main URL’s served by all uibuilder node instances in the flows. Requires user to have uibuilder.read permissions.

	CHANGED Improved logging. Naming is more consistent, don’t log to Node-RED log if Winston not used. Include instance url in Winston log line header for clarity. Increase Winston log file size. Logging also improved for debugging uibuilderfe.js.

	DOCUMENTED The front-end code for jQuery seems to move about randomly! It is in one of two places, if you get an error with the default location (the dist sub-path), remove dist/ from the url.

	CHANGED package.json ‘pack’ script changed to ‘packfe’ to avoid clash with npm’s native pack script.

v1.0.12

	FIX Seems that the information given to me in Issue 39 wasn’t quite correct. I should have done more investigation first!
Reverting the location of JQuery in the template back to its original, correct, location.

You won’t notice unless you create a new node instance using the default jQuery index.html file.

v1.0.11

	NEW Add some example flows to the example libary.
Use the Node-RED administration UI’s menu Import > Examples > uibuilder to import them.

	FIX Bug in socket.io namespace if httpNodeRoot was set to something other than default. Also closes Issue #30 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/30]

v1.0.10

	FIX Fixed Issue #39 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/39] - jQuery incorrect URL
referenced in the html template file. Thanks to Kevin Smets [https://github.com/kevin-smets] for reporting.

v1.0.9

	CHANGED When a client connects, it receives a control message (msg.uibuilderCtrl = ‘client connect’). That message now contains the property msg.serverTimestamp. This can be used in client code to work out the difference between the server time (which should always be in UTC) and the client browser time without needing any clever (and big) libraries such as MomentJS.

v1.0.8

	FIX for Issue 33 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/33]. Pull Request 38 provided by Ellie Lee [https://github.com/ellieejlee] - many thanks. Should fix the problem where double messages are output after a while.

v1.0.7

	CHANGED Undo use of RED.settings.get() for properties in settings.js as this is apparently not correct. See Node-RED issue #1543 [https://github.com/node-red/node-red/issues/1543] for details.

v1.0.6

	No changes, problem publishing to npm.

v1.0.5

	FIX “TypeError: Cannot read property ‘middleware’ of undefined” - should now be fully resolved. You should not require a uibuilder property in settings.js. If you do have the property, you should not require a uibuilder.middleware property. Also switched to RED.settings.get('prop') instead of RED.settings.prop.

	CHANGED Split back-end code, utility functions now in uiblib.js

	CHANGED Minimum Node.JS version bumped up to 6.11

	CHANGED Improve documentation of the settings.js entries, provide better example code. Ensure everyone understands it is optional.

v1.0.4

	FIX GitHub documentation path fixes

	CHANGED Moved To Do list to the WIKI [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/To-Do]

v1.0.3

	FIX uibuilderfe.js and uibuilder.min.js versions were different.

	NEW GitHub contributed and issues templates, EditorConfig file for consistent code submissions.

	CHANGED Update WIKI links in README and Further tidy up. Added new section on settings.js

	CHANGED Always force a pack of uibuilderfe.js before doing an npm publish using the package.json prepublish script.
Ensures that we don’t get another problem with mismatched builds.

	NEW Added optional ExpressJS middleware hook before the Node-RED one.

NOTE: In this first implementation, there is only a single middleware function available. So ALL instances of uibuilder get the same middleware. Future versions will get one per node instance.

This lets people have a different authentication/authorisation plugin to Node-RED’s http-in/out nodes. If the uibuilder specific middleware is provided, the node-red middleware function is ignored.

In settings.js uibuilder.middleware must be a function such as:

 middleware: function(req,res,next) {
 console.log('I am run whenever a request is made to ANY of the uibuilder instances')
 next()
 },

v1.0.2

	CHANGED Improved logging, custom format for log to file, some debug msgs swapped to verbose.
Log files now rotate once they reach 50kb in size. Only 10 files are kept.
You can now specify the back-end logging level you want in settings.js.

Log levels are: ‘error’, ‘warn’, ‘info’, ‘verbose’, ‘debug’, ‘silly’. You can also use true as before, that is equivalent to ‘silly’

v1.0.1

	CHANGED uibuilderfe: Socket namespace now derived from cookie first. Still uses URL as a backup.
Allows the use of any html pages in the front end, even from sub-directories. As long as you don’t have clashing URL’s. Previously, trying to use a web page from a folder would break the Socket (which will still happen if the cookie can’t be read).

WARNING: All pages derived from a single uibuilder node instance share the same Socket. It is up to you to filter out the msg’s you need for any specific page.

Note: If using an html file in a sub-folder, don’t forget to adjust the relative URL’s for resource loading.

	CHANGED index.html Template and default. Made the relative URL’s more obvious.
./rel-url-... for things relative to the current folder. So if creating a page in a sub-folder, you need to use ../rel-url-... (2 leading dots) to reach up a level to find the other JS and image resources.

v1.0.0

All of the basic features are now complete and tested sufficiently to make this v1. Thanks to everyone that helped get this far. Watch out for node-red-contrib-infocache which will be coming shortly as a companion to handle message caching.

	CHANGED control message property “cache-control” now changed to “cacheControl” to make it easier to use.

	CHANGED uibuilderfe: Version bump

	CHANGED uibuilderfe: control message property “cache-control” now changed
to “cacheControl” to make it easier to use.

	CHANGED uibuilderfe: Ensure control msgs have a “uibuilderCtrl” property
set (defaults to “manual send” if not set)

	CHANGED index.js master template: Instructions updated and a manual cacheControl msg added

v0.4.9

	CHANGED Rationalised control messages:
“client connect”, “client disconnect”, “socket error”, “ready for content”* (instead of “server connect”, “client disconnected”, …) - those marked with * come from the client, everything else from the server.

	CHANGED Improved topic handling on control messages. Topic property only added if it is not blank.

	CHANGED Added “from” property to control messages. “server” or “client”. Helps understand what is generating them.

	CHANGED Prevent msg loops by blocking any control messages from the node’s input port.

	CHANGED uibuilderfe v0.4.9: Version bump and control messages rationalised as above.

v0.4.8

	NEW A second output port has been added that gives access to some control messages.
This allows additional processing when a client connects or disconnects, an instance is (re)deployed or there is a socket error. You could, for example, output some standard information when a new client connects. Or you could use the information for utilisation metrics.

	NEW Exposed server control messages:
‘server connect’ (when a client connects), ‘client disconnect’, ‘shutdown’ (when Node-RED shuts down or the node is (re)deployed), ‘socket error’.
See the Control Message Structure [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/Control-Message-Structure] page in the WIKI for details.

	NEW Added flag to block copy of index.(css|js).
See GitHub Issue #21 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/21]
WARNING: For existing instances, this flag is not set even though it is the default. This appears to be an issue with Node-RED.

	NEW uibuilderfe: You can now send control messages from the front-end to the server using uibuilder.sendCtrl(msg)

	NEW uibuilderfe: Added ability to send a control message of type ‘ready for content’.
This is meant to be used to trigger sending of cached messages from the server so that new or reloaded pages receive the last message(s) from the server. By default, this is triggered from the window.load event (e.g. after the DOM and external resources have been loaded). If you are using a front-end library such as MoonJS/Riot/Vue/etc, this may be too early. In which case, use uibuilder.autoSendReady(false) and then use ~~uibuilder.sendCtrl({'type':'ready for content'})~~ uibuilder.sendCtrl({'uibuilderCtrl':'ready for content', 'cache-control':'REPLAY'}) when your app is ready for content (e.g. perhaps at the end of the app.mounted event).

	CHANGED uibuilderfe v0.4.8c: cache-control property added in readiness for integration with
node-red-contrib-infocache [https://github.com/TotallyInformation/node-red-contrib-infocache].
Manual cache replay requires uibuilder.sendCtrl({'uibuilderCtrl':'ready for content', 'cache-control':'REPLAY'})

	CHANGED uibuilderfe v0.4.8d: Renamed control property 'type' to 'uibuilderCtrl'.
See Issue #22 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/22].

	CHANGED _socketId properties now consistent for all control messages.
This allows Node-RED to do something and then return a msg to the originating client. If you need to broadcast to all clients, simply delete the _socketId property before sending.

	CHANGED uibuilderfe: All instances of “attribute” replaced with “property”.

	CHANGED index.js: The index.js template file has been updated
with clarified information on available uibuilder methods and properties. Temporarily rename your local copy and redeploy node instances to get the latest and then swap over.

	CHANGED GitHub WIKI: Restructured the
home page [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/], created a new Getting Started [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/Getting-Started] page. Updated the page on caching and replay of messages [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/Message-Caching]

v0.4.7

	CL: Added check and load Socket.IO for running via webpack.

	CL: Reinstate missing force (re)connection to Socket.IO check on initialisation.

	Fix typo in readme.

	Added available URL paths and the global uibuilder settings to the admin settings ui.
So that you can see what modules have been loaded and made available to your front-end code.

	FIX: Incorrectly derived Socket.IO namespace in uibuilderfe.js.
Didn’t work if the web page was on a sub-path such as /uibuilder/vega - thanks to Steve Rickus

	FIX: Incorrectly derived Socket.IO namespace in uibuilder.js.
Didn’t work if settings.js httpNodeRoot was set to anything other than /

	To Do’s moved to separate file

	Additional tidy up and clarity in README

v0.4.6

	Added ability to include msg.script and msg.style in messages sent to the front-end from Node-RED (over Socket.IO).
These must contain valid javascript and CSS respectively in the form of strings or arrays of strings. Currently there is minimal validation so some caution should be used. I will be adding configuration flags to allow admins to block this.

	Added new node configuration flags to (dis-)allow scripts or styles to be input via incoming msg’s.

	Added new node configuration flag to easily turn on/off debugging information in the front-end -
check the browser developer console for the additional output if turned on. You can still override in index.js or at the browser developer console by using uibuilder.debug(true) etc.

	FIX: Bug that didn’t correctly remove/re-apply Express static routes on (re)deploy has been fixed.

v0.4.5

Note: The master front-end template files have changed again. Specifically, they now use a minimised version of uibuilderfe.min.js & that code is better isolated, only the uibuilder function is exposed.

	Minimised and better isolated the front-end code.

	Some minor issues dealt with in the FE code.

	New FE function: uibuilder.me() that either returns the code version (if debug not set) or the complete function object for better debugging.

	uibuilder.debug() now returns the current debug state if no boolean parameter given. Parameter validated as boolean|undefined.

	Fixes for changes in new version of get-installed-path.

	Begun to add JSDoc throughout and added // @ts-check to better validate code.

	Update dependencies to latest.

v0.4.2

Note: The master front-end template files have changed significantly in this release. It is suggested that you rename your local folder (~/.node-red/uibuilder/uibuilder) - and let the node rebuild it for you with the latest template. Most of the message handling code is now hidden away in a JavaScript file that you don’t need to deal with uibuilderfe.js. The new index.html automatically loads that for you and the new index.js shows you how to use it. The old templates still work but aren’t as nice and may stop working correctly in the future.

	Restructure the front-end JavaScript.
A single global object is created by uibuilderfe.js called uibuilder. This encapsulates all of the core logic. It has an onChange method that lets you monitor its attributes for changes and take action as appropriate.
Debugging is also easier to turn on/off by the function uibuilder.debug(true). It has set and get methods for writing/reading attributes; set disallows setting of core attributes.
There is also a uibuilder.send method that sends a message back to Node-RED - e.g. uibuilder.send({topic:'uibuilder',payload:'Smashing!'})

	Fix for using dist folders instead of src (Issue 13 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/13]). Also improved debug logs

	Changed logging so that, if not using the debug setting,
produces only minimal output and that goes to the standard Node-RED log instead of the log file. Turning on debugging using the setting in settings.js will output to the log file ~/.node-red/uibuilder.log

	Added default master src/index.html which covers the situation where you delete your live, local index.html from dist or src. You get a page that tells you how to fix it.

	Page icon changed from red to blue to help visual identification of the page amongst other Node-RED tabs

	More tidying of the documentation. Making sure it is consistent and removing to do entries now completed

v0.4.0

Breaking Change: You must have at least index.html in your local override folder. For Socket.IO, you will also need to have index.js.

	Copy template files to local override folder if not already existing - this will
save users having to hunt down the template files which exist in this module.

	Move master front-end files from src to templates folder.

	Tweak front-end index.js, better Socket.IO reconnect logic
(thanks to Colin Law [https://github.com/colinl], Issue 9 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/9], Pull request #11) [https://github.com/TotallyInformation/node-red-contrib-uibuilder/pull/11].
Also tidy code and start to extract JQuery specifics from core logic in preparation for a complete separation to make coding easier for users.

	Enable msg’s to be sent from server to a specific client instance by adding _socketId
attribute to the msg. The ID must match the appropriate client ID of course.

	Links to WIKI and table of contents added to README.

	Switch from using fs to use fs-extra node.js module. Initially for copying the template files but later on for refactoring all fs code.

	Remove config switch for “Use reproduces in custom folder” as this is always done now.

	Add connected state to default page template
(thanks to Colin Law [https://github.com/colinl], Pull request #12 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/pull/12])

v0.3.8

	Fix for Issue 2 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/2] - not finding normalize.css & JQuery front-end libraries.
Adds the get-installed-path module to find out where the modules are actually loaded from.

	An enhancement of the above fix that uses require.resolve() as a backup to try and find the front-end module location if get-installed-path fails.
However, this can return a machine folder that is invalid for use as a source for adding as a static path for ExpressJS.

	Additional fix for the above - force the current working folder to be the NR userDir for get-installed-path as some installations of NR leave
the cwd point at the home folder not the userDir.

	Replace native Node-RED logging with Winston. If debug: true is added to the uibuilder section of NR’s settings.js, a file called uibuilder.log
is created in your userDir (~./node-red by default) containing detailed logging information.

	The flag for forwarding the incoming msg to output is now active. If not set, the only output from the node is when something is received from a
connected front-end client browser. Note that the default front-end web page is quite “chatty” and sends control messages as well as anything you
set up; this is easily disconnected. Also fixed bug, see Issue 4 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/5]

	Option to not use the local folders was broken. Now fixed.

	Possible fix for loss of reconnection, see Issue 3 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/3]

v0.3.1

	Fixed issue when no config settings found. Added getProps() function
Error prevented anything from working. Changed to use getProps to prevent.

v0.3.0

	Fixed incorrect line endings. Updated front-end manifest.json. Fixed minor error in uibuilder.js. Updated dependency versions.

	Breaking changes due to new major version of Socket.IO (v2 [https://socket.io/blog/socket-io-2-0-0/]) and Webpack. Shouldn’t impact anything since you need to restart Node-RED anyway.
However, you might need to force a full reload of any active clients.

v0.2.1

	Tweak this readme as the node seems to work OK. Removing the Alpha label.
You should consider this suitable for general hobby use. Production use would need good testing before trying to rely on it.
Remember, this has been written just by me, I’m afraid I can provide no guarantees.

v0.2.0

	Fixed incorrect app.use logic which meant that the tree order was incorrect. Also improved app.use removal though still not perfect, seems to be a limitation of ExpressJS v4

v0.1.4

	Add logic to client to start retrying to connect after server closedown

	Final code and text tidying ready for wider use

v0.1.3

	Add control msgs from server to client on closedown of server (e.g. for redeploy)

	Add topic to node config

	Add userVendorPackages to node config

v0.1.2

	Simply dynamic front-end code using JQuery. Fixed typo’s in docs. Fixed auto-respond test messages. Add path to Socket.IO to make sure the client loads the right version from the server.

v0.1.0

	Initial release to npm. Socket.IO namespace working, src/dist folders available and working. Only the most basic front-end template included.

 Changelog Archive for v2

Changelog Archive for v2

Current major version changelog can be found in the root of this package: ../CHANGELOG.md.

2.0.8 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v2.0.7...v2.0.8]

Fixed

	Allow for npm Scoped Packages [https://docs.npmjs.com/using-npm/scope.html]. e.g. those like @riophae/vue-treeselect.

These can now be added and removed. Fixes Issue #71 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/71]. Thanks to Stephen McLaughlin.

2.0.7 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v2.0.6...v2.0.7]

New

	Add a middleware JavaScript module file to allow use of socket.use. The new <uibRoot>/.config/sioUse.js file exports a single function.
The function is called everytime the uibuilder node receives a message from a client. If the next() callback function is called with a new Error('err message')
parameter, that is passed back to the client.

	uibuilderfe: Add socket.io error event handler - outputs a console warning message so switch on debug to see it.

The Socket.IO server will send an error message if the socket.use middleware (see above) calls next(new Error('err message'))

Add your own event handler to do something useful with the message.

Typical use is to handle data errors or even authorisation failures.

	Add X-XSS-Protection: 1;mode=block and X-Content-Type-Options: nosniff security headers.

If you want to add your own headers, make use of the uibMiddleware.js (for ExpressJS) and sioMiddleware.js (for Socket.IO initial connection and polling connections) middleware files.

Changed

	Further code tidy up.

	Move configuration template files from templates root to templates/.config and reduce copy processes down to just copying the folder with no overwrite

	Removed httpRoot from Socket.IO namespace. No longer required now that uniqueness checks are done on URL config. Simplifies configuration.

Fixed

	Issue #84 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/84] Proxy rewrites were messing with the Socket.IO namespace.
Many thanks to Vinay Kharecha [https://github.com/vinaykharecha] for reporting.

2.0.6 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v2.0.5...v2.0.6] - 2019-11-21

Fixed

	Improved detection for projects. Previously if projects had been in use and were then disabled, uibuilder would still think them active.

Changed

	Add a new example to the library: cacheByTopic - A simple caching example that uses a function node to cache the last msg for each topic & replay them when a client connects.

	Improved initial debug msg in the front-end (if debug=true), shows versions and whether the minimised version of uibuilderfe is in use.

	Code safety improvements and tidy up.

	Slight tweak to the default template (VueJS). The button now has an ID and the increment function prints out the event object to console.

2.0.5 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v2.0.4...v2.0.5] - 2019-10-04

Fixed

	Issue #73 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/73] Cannot read property ‘endsWith’ of undefined in uibuilderfe.js - added extra zero-length checks. Thanks to Scott Page - IndySoft [https://github.com/scottpageindysoft] for the fix.

Changed

	Further improvements to changelog format & fixes to formatting.

	Switch round some properties in package.json to make it easier to read.

	uibuilderfe: Small tweak to debug output for better analysis. Also outputs both library version AND whether you are running the packed (minified) or unpacked version.

2.0.4 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v2.0.3...v2.0.4] - 2019-09-28

Added

	uib icon (blue node-red icon) to the detailed information page (uibindex) & logo to README

	Look for the package.json browser property not just main and display it on the uibuindex page if available instead of main.

Changed

	CHANGELOG.md changed to use “Keep a Changelog [https://keepachangelog.com/en/1.0.0/]” recommended formatting which will facilitate the use of gh-release in the future. Also added link to list of commits between versions.

	package.json

	added browser property as per this spec [https://github.com/defunctzombie/package-browser-field-spec] (also https://github.com/stereobooster/package.json) to give hints to bundlers. Changed main to point to the server-side js.

	Added directories.doc, directories.lib & directories.test

	Updated the detailed information page (uibindex). Improved layout and added some additional useful debugging information. Included the URL for the common resources.

	Dependent packages updated to latest

Fixed

	Fixed detailed information page (uibindex) issues:

	Error in link url’s

	Error in “Main Entry Point” column if package.json didn’t contain a main property.

	Common folder was served as /<httpRoot>/<uibUrl>/common instead of /<httpRoot>/uibuilder/common. Added the 2nd form, note that the first form should not be used, it may be deprecated in a future release.

	Incorrect default values

Removed

	Spurious from the detailed information page (uibindex)

	Spurious console.log for oneditresize

Commits [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v2.0.3...v2.0.4]

v2.0.3 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v2.0.2...v2.0.3]

	UPDATE bootstrap-vue has been updated to v2.0.1 from the dev version. Check out the bootstrap-vue changelog [https://bootstrap-vue.js.org/docs/misc/changelog/] because there are a few breaking changes.

	UPDATE Fix formatting of links in the config panel in readiness for Node-RED v1.0

	UPDATE Add workaround for npm packages that don’t define a main entrypoint. Fixes Issue #67 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/67].

Commits [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v2.0.2...v2.0.3]

v2.0.2 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v2.0.1...v2.0.2]

	UPDATE Update examples for uibuilder v2. Include new example of caching with a function node (many thanks to @cflurin [https://discourse.nodered.org/u/cflurin])

Note that some of the WIKI examples have also been updated.

v2.0.1 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v2.0.0...v2.0.1]

Bugfix for Issue #59 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/59]

v2.0.0 (live) [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v1.2.6...v2.0.1]

Welcome to v2 of uibuilder.

This version is a significant rebuild from v1.x with many changes, some of which are breaking and will require you to make a few minor changes to existing code and settings I’m afraid. See below for details.

v2 provides a much stronger platform for further developments such as a front-end build step so that you can use Webpack, TypeScript, etc. The main To Do list is now in the WIKI [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/To-Do].

v2.0.0-beta3.5

NOTE: This is the final planned beta.

Final list of breaking changes between v1.2.2 and v2.0.0 - note that a complete list is available in the WIKI [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/v2-Breaking-Changes]. A copy is in the docs folder of this repository.

	Bug fixes in v2.0.0.beta3

	[x] [Major] Admin ui: Full-screen editor only uses Javascript language instead of inheriting the correct language (e.g. html)

You now get proper full-screen on all but the oldest of browsers.

To enter fullscreen, click the expand/compress button.

Press Esc or click the expand/compress button to exit.

Also note that the standard edit box auto-sizes to the available height as well now. So no more need for the bottom resize drag bar.

	[x] [Major] Default VueJS template Javascript contains some ES6 rather than ES5 (const,let replaced by var)

	[x] [Minor] Admin ui: Most links don’t force target=_blank in panel and help.

	[x] [Minor] Admin ui: New file creation dialogue, button says “New”, change to “Create”.

	[x] [Minor] Admin ui: better documentation - esp. in regard to full-screen button. (Added to help panel)

	[x] [Minor] Documentation: Note about bootstrap warning (ignore)

	The minimum supported version of Node.JS is now v8.6.

	Settings in <userDir>/settings.js are no longer used, you should probably remove them to save confusion.

	The folder used for configuration settings and your front-end code is found at <userDir>/uibuilder/ (e.g. ~/.node-red/uibuilder/) if projects are not being used. Alternatviely, it is at <userDir>/projects/<projectName>/uibuilder if using projects. This folder is refered to in the documentation as <uibRoot>

	Configuration files are found in <uibRoot>/.config

	In your front-end index.html file, all of the master vendor files (deployed to <userDir>) now use a common URL style ../uibuilder/vendor/--- rather than the previous ./vendor/---. You MUST update your html accordingly.

Note that the socket.io client also now uses this pattern. This allows it to take into account your httpNodeRoot setting which wasn’t possible previously.

e.g. <script src="../uibuilder/vendor/socket.io/socket.io.js"></script>.

	There is now a folder you can use to make common front-end code available to all instances of uibuilder. It is found in <uibRoot>/common/. That folder is mounted to the ../uibuilder/common/ URL.

	ExpressJS and Socket.IO middleware can be added to the <uibRoot>/.config folder. Dummy template files are provided. Limitations are listed in the comments of the templates. Any middleware specified in settings.js is ignored.

If you want to use the same middleware as for httpNodeMiddleware, alter settings.js to read the uibuilder middleware file.

The ExpressJS middleware files are <uibRoot>/.commonMiddleware.js and/or <uibRoot>/<instanceName>/.middleware.js. The socket.io middleware files are <uibRoot>/.commonIoMiddleware.js and/or <uibRoot>/<instanceName>/.ioMiddleware.js.

This lets you have per-instance middleware as well. Both are loaded if present.

	Logging no longer uses Winston and you can delete any log files previously created. Logging is now integrated with Node-RED logs. To get more detailed uibuilder logs, change the Node-RED log settings in settings.js.

This should generally no longer be necessary. If you are unsure about what uibuilder is doing (e.g. what URL’s it is serving and from which source folders), please use the provided API at http<s>:<server>:<port>/<httpAdminRoot>/uibindex. All instances of the uibuilder Node have a link to this called “Detailed Information”. Access to this page is secured with the same settings as the Node-RED Editor (admin ui).

	In the front-end library (uibuilderfe.js):

	You now MUST initialise the library yourself by including the code uibuilder.start() as early as possible.

e.g. (where your nodes URL is set to myurl and httpNodeRoot is set to nr) <uibRoot>/myurl/src/myfolder, in this case you would start the library with uibuilder.start('/nr/myurl', '/nr/uibuilder/vendor/socket.io').

If you get continual uibuilderfe:ioSetup: SOCKET CONNECT ERROR error messages (see your browser’s developer console), you probably got this wrong.

This allows the socket.io namespace and ioPath to be overwritten which is important if you want to use code that is not in the instance root folder.

This also allows you to write front-end code to interact with uibuilder from a completely separate web server! Though you may have to mess with CORS settings.

	The variable sentMsg now only contains a copy of the last standard message sent back to the Node-RED server. sentCtrlMsg is a new varible that contains a copy of the last control message sent.

If you want to track these in your front-end code, monitor them with uibuilder.onChange('sentMsg', function(newVal){ ... }) and uibuilder.onChange('sentCtrlMsg', function(newVal){ ... }). See the default template for details. msgsSent and msgsSentCtrl are updated accordingly and contain the count of messages since the last page reload.

	If you have a difference in timezones between your Node-RED server and your client browsers, you can track this with the serverTimeOffset variable which is the number of hours that the server is different to the client.

Use as uibuilder.onChange('serverTimeOffset', function(newVal){ ... }).

There is a summary of the URL paths used by uibuilder v2 in the WIKI [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/V2-URI-Paths].

v2.0.0-beta1

	BREAKING CHANGE Two new files in <uibRoot>/.config control how front-end library packages are managed. You don’t ever have to touch these since they will be managed for you. However, you can change them if you want to.

masterPackageList.json is copied from a template and is used to search for common front-end packages. If any of the packages in this list are found to already be installed into <userDir>, they will automatically be added to the installed list.

packageList.json is created from any FE packages actually installed. If you uninstall a package in the list manually, the list will automatically update. If you install a FE package manually, if it is in the master list, it will be added here automatically, otherwise you will have to add it manually.

On first upgrade from v1 to v2, the packageList file will be updated from the uibuilder section of your <userDir>/settings.js file.

	BREAKING CHANGE Middleware for both ExpressJS and Socket.io is now loaded from js files in <uibRoot>/.config. Dummy template files are copied over if they don’t exist.

	NEW Add configuration flag to allow a web page showing all served files for a specific uibilder instance. If set, the url <url>/idx will show an index listing of the <uibRoot>/<url>/ folder (which includes the src and dest folders). The url is shown in the admin panel.

	CHANGE Code tidy, removal of deprecated functions and variables.

v2.0.0-dev4

	CHANGE Installation and removal of npm packages from within the Admin UI now work correctly.

	CHANGE The docs folder of the uibuilder npm package contains some developer and testing documentation. It includes a simple web page that will display the documentation.

v2.0.0-dev3

	BREAKING CHANGE In uibuilderfe.js. Previously, it was quite hard to trace incoming/outgoing messages, especially between control and standard messages. This change aims to improve that.

The variable sentMsg now only contains a copy of the last standard message sent back to the Node-RED server. sentCtrlMsg is a new varible that contains a copy of the last control message sent.

In addition, the variable msgsSentCtrl is now actually being updated.

This has a knock-on impact to the default index.js file.

	CHANGE The front-end template files index.html and index.js have changed. Delete or rename your current ones, the new ones will be copied over unless you have turned off the copy flag in the admin ui. Alternateively, manually review the code changes.

	CHANGE Admin UI: Flag to control front-end library debugging has been removed as it wasn’t very effective anyway. To turn on debug output for the front-end library (uibuilderfe.js), set uibuilder.debug(true) in your index.js file.

	CHANGE Admin UI - edit files: New files can now be created. Files can also be deleted.

	CHANGE uibuilderfe: uibuilder.get('serverTimeOffset') now returns the difference in hours between the servers time and the browser time. Useful if you need to process date/time values from the server.

	CHANGE Docs: Continuing to improve the in-repo technical documentation. Some coverage now for the two back-end helper libraries, the main uibuilder.js and uibuilderfe.js. In addition, a new regression-tests.md document. The v1 changelog and readme are also in the ./docs folder for historical reference.

	CHANGE Templates: index.html, index.js and index.css have all been improved in this release. If you are using the default page & js, please delete them and allow uibuilder to create them.

	FIXED Deploy causes vendor paths (except socket.io) to disappear
Bug introduced by moving vendor path processing to outside of the instance process. So we have to exclude the vendor paths when killing the instance paths during the close event.

	FIXED uibuilderfe: Issue with some browsers and the debugging function. See Issue #49 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/49] for details.

v2.0.0-dev2

This release has some breaking changes over the previous v2.0.0 so I’ve changed the version number.

Since the URI’s for uibuilder have changed between v1 and v2, I’ve created a WIKI page summarising the new ones [https://github.com/TotallyInformation/node-red-contrib-uibuilder/wiki/V2-URI-Paths]. Note: <uibRoot> = <userDir>/uibuilder or <userDir>/projects/<projectName>/uibuilder if using projects.

	BREAKING CHANGE No more settings files! Neither the old settings in <userDir>/settings.js nor the “new” ones in <uibRoot>/.settings.json are needed any more. This greatly simplifies configuration.

	BREAKING CHANGE Socket.io client URL now matches the pattern for all other vendor libraries: ../uibuilder/vendor/socket.io/socket.io.js (/vendor added). All vendor packages deployed to userDir/node_modules and made available by uibuilder are now served using the same pattern: ../uibuilder/vendor/<moduleName>/.

	BREAKING CHANGE A new URI path is available ../uibuilder/common/. This is used to serve your own common resources (available to all instances of uibuilder). It maps to the <uibRoot>/common folder which is created if it doesn’t exist.

	BREAKING CHANGE You can no longer use Node-RED’s middleware (httpNodeMiddleware in <userDir>/settings.js). See below. Middleware is mostly used for security processes to be added into the web server processing (e.g. JWT).

	BROKEN FOR NOW Security middleware - has to be moved to <uibRoot>/.commonMiddleware.js and/or <uibRoot>/<instanceName>/.middleware.js.

	Similarly, Socket.IO can have its own middleware defined in <uibRoot>/.commonIoMiddleware.js and/or <uibRoot>/<instanceName>/.ioMiddleware.js. However this is only called when a client connects - only once - so it doesn’t give the same level of security.

	CHANGE Logging is simplified further. All logging is to Node-RED’s stdout and errout. Reduced noise by default (instance details no longer logged by default). Turn on additional logging by setting debug flag in instance configuration. Then adjust Node-RED log level to see more detail.

v2.0.0 (pre-dev)

	BREAKING CHANGE Vendor app.use paths moved from instance level to module level so only done once. This means that you have to change your index.html file. Where before you might have had something like <link rel="stylesheet" href="./vendor/normalize.css/normalize.css">, that must now change to <link rel="stylesheet" href="../uibuilder/vendor/normalize.css/normalize.css">. Any link that started like ./vendor must be changed to ../uibuilder/vendor.

	~~BREAKING CHANGE The socket.io client library has moved path. Previously it didn’t take into account httpNodeRoot but now it does. You will need to change the script tag in index.html, it was <script src="/uibuilder/socket.io/socket.io.js"></script>, now it must be <script src="../uibuilder/socket.io/socket.io.js"></script>.~~ Changed again in v2.0.0-dev, see above.

	BREAKING CHANGE If using Node-RED’s “projects” feature, each project now gets its own uibuilder folder. Without projects, this is located at <userDir>/uibuilder/. With projects, it will not be located at <userDir>/projects/<projectName>/uibuilder/. This location will now be referred to as <uibRoot>. See below for other files and folders that have been moved to <uibRoot>.

	~~BREAKING CHANGE Optional server logs moved from <userDir> to <uibRoot>/.logs/. Keeping things tidy. Each project (if in use) will have its own logs.~~ REMOVED in v2.0.0-dev

	BREAKING CHANGE Default templates changed from jQuery+normalize.css to VueJS+bootstrap-vue. Vue, bootstrap and bootstrap-vue are automatically installed.

	~~BREAKING CHANGE The uibuilder global settings are no longer used from <userDir>/settings.js. They are now found in <uibRoot>/.settings.json. Existing settings are automatically migrated for you. When adding/removing vendor packages manually, you must make changes to the new file, settings.js is ignored after the first migration. This helps pave the way for package installs from within the admin ui.~~ Changed again in v2.0.0-dev, see above no settings files are needed any more.

	CHANGE: If using projects - each project now has its own uibuilder root folder.

	BREAKING CHANGE As a consequence of the above, it is no longer possible to load custom middleware via the uibuilder global settings. A newer, better approach will be reintroduced ~~in a future version. As a workaround~~ before release. ~~the standard Node-RED custom middleware httpNodeMiddleware can still be used as it is loaded by uibuilder - note, however, that this is also used by http-in nodes.~~

	BREAKING CHANGE The minimum supported version of Node.JS is now v8.5

	BREAKING CHANGE Settings for detailed logging have changed. debug must now be either true or false. If true, extended logging goes to Node-RED’s log, there is no separate, dedicated uibuilder log file now. Set Node-RED’s logging level to debug or trace to see detailed logging. Set debug to false if you want to use Node-RED’s detailed logs but don’t want the uibuilder stuff cluttering things up. Default is false.

	FIX In uibuilderfe.js, provide a polyfill for String.prototype.endsWith to be kind to folk who are forced to live with Microsoft Internet Explorer or other outdated browsers.

	FIX Sometimes, a package’s location might affect the URL needed to access the front-end library. For example, jquery would sometimes require dist/ in the URL and sometimes not. Turns out that there are some edge cases when trying to identify the physical location of packages. These have now all been dealt with by using custom code instead of a 3rd party package that didn’t always work.

	FIX Small regression bug in uibuilderfe.js. Prevented socket.io from communicating when httpNodeRoot was not set. Added urlJoin function to prevent.

	FIX Moved examples folder to the right place so that Node-RED admin ui will pick it up.

	NEW Admin API <adminurl>/uibvendorpackages Returns list of available vendor packages with url and folder details.

	DEPRECATED IN v2.0.0-dev1 replaced with <adminurl>/uibnpmmanage ~~NEW Admin API <adminurl>/uibnpm - run some npm commands from the admin ui. Will work against against userDir or <uibRoot>/<url> locations (optional url parameter). Checks whether package.json is available in the location. Option to return the installed npm packages in that location.~~

	Commands supported - note that return output is JSON, you should always get something back.

	check: Check whether package.json and node_modules exist

	packages: Lists all of the top-level packages installed at this location.

	init: Create a package.json file with default entries. You should ideally configure npm correctly on the server before running this if you want it to pick up your author details, etc.

	install, update, remove: Requires the package parameter. Installs/updates/removes the given package if it can. Will be blocked if the chosen location does not contain a package.json file since this would potentially result in packages being installed in a parent folder which, in this case, is unlikely to be helpful.

	CHANGED Improved <adminurl>/uibindex:

	added check parameter, if provided will check if the value matches a uibuilder url in use. If so, returns true otherwise returns false. Used in the admin ui to check for url uniqueness.

	Moved from standard app server to admin server so that the start of the url path has to be the same as Node-RED’s admin ui - for better security.

	Expanded output. Included links to vendor homepages for each package, included link to “main” entrypoint.

	Added package version.

	Added bootstrap (2.3.2 used by Node-RED admin ui), improved layout

	CHANGED In uibuilder admin node configuration panel (uibuilder.html):

	File editor improvements:

	File switches automatically on selection change - no need for an edit button any more.

	Cancel and Done buttons disabled if there are unsaved changes to a file. Either Save or reset the file to re-enable them.

	Expander button added - similar to the function and other core nodes - expands the edit area to full screen.

	Default/previously selected file opened for edit automatically.

	Improved handling of reopening the ui - last file selection retained.

	Added folder selector. Now you can edit files (and copy from) in the current instances src, dist and root folder.

	Improved validation for url setting. It must not be more than 20 characters, must not equal ‘template’. Must not contain ‘..’, ‘/’ or ‘’. Must not start with ‘_’, ‘.’. It must also be unique (e.g. not already in use).

	Hide path and module info by default, click to toggle.

	New Advanced Settings section, hidden by default, click to toggle. Move debug flags to it.

	Swapped vendor path list to <adminurl>/uibvendorpackages API.

	Path and module info section now simplified - added link to <adminurl>/uibindex for detailed information.

	Now redirects to the uibuilder index admin page <adminurl>/uibindex instead of recreating its own detailed information.

	CHANGED Several instance config variables no longer needed: filename, format, template

	CHANGED In uibuilder admin help panel - help text simplified and improved. Added description of the parameters accepted by <adminurl>/uibindex.

	CHANGED In uibuilder helper library tilib.js:

	New function readPackageJson: Returns an object of the package.json file in a given folder.

	New function findPackage: Replaces 3rd party package to find the root folder of an installed package.

	Improved urlJoin function: Handle arguments containing undefined

	CHANGED The nodes admin html file is now split in 3, see the node-src folder. A build script has been added npm run build to assemble the actual file from the components.

	CHANGED The following npm packages are no longer required and may be removed:

	winston is no longer required for logging. Logging now uses Node-RED’s logger.

	get-installed-path wasn’t working reliably, now replaced with custom code.

Because of the many changes in v2, the v1 changelog has been moved to a separate file: ./docs/CHANGELOG-v1.md

 Changelog Archive for v3 and v4

Changelog Archive for v3 and v4

Current major version changelog can be found in the root of this package: ../CHANGELOG.md.

4.1.1 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v4.1.0...v4.1.1]

New

	Issue #151 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/151]If the advanced option to “Show web view of source files” is selected, also show a link to the webpage.

Changed

	Issue #149 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/149] If security is turned on, you can now run without Node-RED using TLS even in production. This is because you may wish to provide TLS via a reverse proxy.

You still get a warning in the editor though.

	Moved back-end libraries from nodes folder to nodes/libs to keep things tidier (especially if additional nodes added in the future)

	Add simple debug function to web.js to allow the ExpressJS routing stack to be dumped to stdout

Fixed

	Issue #150 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/150] Switching between src and dist folders now works without having to restart Node-RED. Existing routes are removed first then re-added.

	Common folder is only served once (previously it was been added to the ExpresJS router stack once for each node instance).

4.1.0 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v4.0.1...v4.1.0]

New

	Add drop-down to adv settings that lets the served folder be changed between src and dist. #147 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/147]

	If the <uibRoot>/<servedFolder> folder does not exist, it will be silently created.

	If the <uibRoot>/<servedFolder>/index.html file does not exist, a warning will be issued to the Node-RED log & the Node-RED debug panel.

	Allow front-end code to update the msg. #146 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/146]

This allows your front-end code to be its own test harness by pretending that a msg has been sent from Node-RED. It would also let you have a single processing method even if you wanted to use a non-Node-RED data input (e.g. a direct MQTT connection or some other API).

uibuilder.set('msg', { topic:'my/topic', payload: {a:1, b:'hello'} })

When using this feature, the uibuilder.onChange('msg', function(msg) { ... }) function is still triggered as expected.

Fixed

	#148 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/148] Editor node config cannot escape https check when not running in development mode

4.0.1 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v4.0.0...v4.0.1]

Fixed

	Minor bug stopping the logoff msg processing from working.

Updated

	All dependencies and dev-dependencies updated

4.0.0 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v3.3.1...v4.0.0]

Major Changes

	Node.js v12+ is the minimum supported environment for Node-RED.

	Only “modern” browsers are now supported for both the Editor and the uibuilderfe front-end library as ES6 (ECMA2015) code is used.

Let me know if this is a problem and I can build a backwards compatible version.

Template handling is significantly changed in this major release

New instances of uibuilder nodes will only be given the “blank” template which uses no front-end frameworks.

You can load a different template using the “Template Settings” in the Editor.

Loading a new template WILL overwrite any files with the same name. A warning is given though so even if you press the button, you can still back out.

You can choose from the following internal templates:

	VueJS & bootstrap-vue - The previous default template.

	Simple VueJS - A minimal VueJS example.

	Blank - The new default.

	External - See below.

But, you can now also chose an EXTERNAL template! This will let you choose from any remote location supported by degit [https://github.com/Rich-Harris/degit#basics]. You can use TotallyInformation/uib-template-test as an example (on GitHub [https://github.com/TotallyInformation/uib-template-test]).

NOTE: When using an external template, no check is currently done on dependencies, you must install these yourself. I will try to add this feature in the future.

Changing the uibRoot folder

You can now set uibuilder’s root folder - that stores configuration, common, security and each node’s front-end code - to a different location. The default location is in your userDir folder in a sub-folder called uibuilder. If you are using projects, the sub-folder will be in your projects root folder. See docs/changing-uibroot.md for more detail.

Updated

	Update fs-extra to v10 [https://github.com/jprichardson/node-fs-extra/compare/9.1.0...10.0.0]. No longer supports node.js v10, requires v12+.

	Make some class methods private in web.js and socket.js. Requires node.js v12 as a minimum as it uses an ECMA2018 feature.

	web.setup and socket.setup can only be called once.

	Socket.IO updated from v2 to v4.

	Added Admin API check for whether a url has a matching instance root folder. (Was an outstanding to-do)

	Reworked the info block that is printed to the log on startup. Much neater and with added info on the webserver being used.

	Technical Docs have been improved in line with some other work I did recently on enterprise standards.

The docsify configuration has been greatly improved with a new theme and some automation for dates and document front-matter.

Added a new page on changing the uibRoot folder.

Updated the front page with links and explanations of the different sections.

New

	In the technical documentation, you can now access and search the main README as well as the current and archive changelogs (v1 & v2) in addition to everything else.

Don’t forget that you can access the tech docs on the Internet from GitHub [https://totallyinformation.github.io/node-red-contrib-uibuilder/#/] AND locally from within Node-RED.

	nodes/web.js - Added web.isConfigured to allow a check to see whether web.setup has been called.

	nodes/socket.js - Added socket.isConfigured to allow a check to see whether socket.setup has been called.

	Add a new icon to the main readme that allows editing of uibuilder code using VSCode either via a remote repository or via a Docker container.

Fixed

	Node-RED edge-case for credentials was causing node to be marked as changed whenever “Done” button pressed even if no changes made. Turns out to be an issue if you don’t give a password-type credential an actual value (e.g. leave it blank). Gave the JWTsecret a default value even when it isn’t really needed.

	Instance details page - CSS now loads correctly even if using a customer server port. Some Socket.IO details that were missing now returned.

	web.js - specifying a custom server port caused uibuilder to crash. Now fixed.

	Lots of tidying up of log messages, especially TRACE level.

	Accidentally include a node.js v14+ issue, now removed.

	Additional try/catch blocks to force better reporting if there is an error in the uibuilder module files.

3.3.1 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v3.3.0...v3.3.1]

Fixed

Added try/catch around Untrapped JSON.stringify in uiblib.js showInstanceDetails(). Prevent crash.

3.3.0 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v3.2.1...v3.3.0]

New

	Add new pre-defined msg from Node-RED that will cause the front-end client (browser) to reload.

	Add auto-reload flag to file editor - if set, any connected clients will automatically reload when a file is saved. (Only from the file editor in Node-RED for now, later I’ll extend this to work if you are editing files using external editors).

	Add new function to uibuilderfe.js - uibuilder.clearEventListeners() - Will forcably clear any onChange event listeners that have been created. Partial update for Issue #134 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/134].

	Added initial documentation for front-end build tooling to technical documentation (general info and Snowpack).

Fixed

	Issue #126 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/126] - Security not turning on even if TLS is used.

	Update security.js template to remove simple false return if authentication fails - this is no longer valid.

Updated

	Bump dependencies to latest

	Add collapsible summaries to README.md

	Various updates to technical documentation

	Update chkAuth validation function to make it more robust

	Improve auth process logging and msg._auth.info checks

	Remove simple true/false return from auth processing as this is no longer valid

	uibuilderfe

	Added check for uibuilder.start() having already been called and prevent it being run more than once. Partial update for Issue #134 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/134].

	Add new function uibuilder.clearEventListeners() - see details in New above.

	Added initial code for a simple alert - not yet ready for use.

	Internal code refactoring

	Prep for adding the ability for uibuilder to use its own independent ExpressJS server

	Rename uibuilder.js’s nodeGo() function to nodeInstance() for clarity

	Add dumpReq() to tilib.js - returns the important bits of an ExpressJS REQ object

	Begin to add Node-RED type definitions

	Add ExpressJS type definitions

	Other linting improvements

	The refactoring has removed several hundred lines of code from the main js file and
simplified quite a few function calls.

	Moved Socket.IO processing to its own Singleton class module.

This means that any Node-RED related module can potentially require the socket.js module and get
access to the list of Socket.IO namespace’s for all uibuilder node instances. All you need is the uibuilder URL name.

It also means that any module can send messages to connected front-end clients simply by referencing the module and knowing
the url.

Note that this currently only works once the class has been instantiated and a setup method called.
That requires a number of objects to be passed to it. This happens when you have added and deployed a uibuilder
node to your flows.

But it does mean that, in theory at least, you could now write another custom node that could make use of the uibuilder communications
channel. Of course, it also opens the way for new nodes to be added to uibuilder. However, a slight caveat to that would be that
loading order would be important and you really must deploy uibuilder before any other node that might want to use the module.

	Started moving ExpressJS web server handling to its own Singleton class module

Again, this will mean that any module running in Node-RED could potentially tie into the module
and be able to access/influence uibuilders web server capability.

Works similarly to the Socket.IO class above. So it has to be initialised using a number of properties
from the core uibuilder node.

Currently, only the core ExpressJS app and server references are handled by the class. More work
is required to move other processing into it.

	Include PR #131 - add Socket.IO CORS support

3.2.1 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v3.2.0...v3.2.1]

Fixed

	Issue #121 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/121] - Thanks to Sergio Rius for reporting and for PR #122 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/pull/122]

	Issue #123 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/123] - Allow for misuse of browser property in package.json for added libraries. Thanks to Steve McLaughlin for reporting and providing a potential fix.

	Technical Docs - Include favicon, expand search. Exclude missing file from search.

3.2.0 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v3.1.3...v3.2.0]

New

	You can now choose between front-end templates.

Vue/Bootstrap-vue is still the default.

Expand the “Advanced” settings to see the new dropdown. Note that uibuilder never overwrites your files so you either have to change the selection before the first deployment of the node or you have to delete the index.(html|js|css) and README.md files before changing the selection.

Three templates are currently included, more may be added later:

	An updated version of the existing default template that uses VueJS and bootstrap-vue. Contains an additional button demonstrating the new simple eventSend function.

	A new “Blank” template. This does not contain any front-end libraries or frameworks. It uses just the uibuilderfe library with raw DOM commands.

	A simplified Vue template. Contains the bare minimum to get you going.

Templates are also now more comprehensive and flexible and contain README files for information.

Templates will also warn you if you are missing a library that they depend on. Install them through the uibuilder library manager.

	The Editor will now tell you if you have missing dependencies for your chosen template.

[image: ../_images/missing-packages-warning.png]missing packages warning

Useful for people who forget to install vue and bootstrap-vue now that they have been removed from the default install.

	When changing an existing node’s URL:

	The existing source folder is renamed

No more losing track of existing code!

	Folders as well as instances are checked for duplicates

	You are now warned to redeploy straight away, before doing anything else

	When deleting a uibuilder instance, you are offered the chance to delete the source folder

	In the uibuilderfe front-end library:

	Added a new public method: eventSend. You can use this to attach to any HTML DOM event (e.g. a button click).
It will automatically send a msg back to Node-RED with details of the event.

Details on how to use this are contained in the technical docs [https://totallyinformation.github.io/node-red-contrib-uibuilder] in the uibuilderfe-js page.
You can access these docs directly in Node-RED either using the button in the configuration panel or the link
in the help panel.

The updated default template also contains an example button that uses the new feature.

Note that you can use more than just button clicks. It will work with any DOM event that you attach it to.

Changed

	Better warning if you set/change a URL to one that already exists.

	When changing URL:

	The original folder (if it exists) will be renamed

	The uibuilder instance folders are also checked. The change is rejected if the folder exists.

	You are warned that you need to redeploy before doing anything else.

NOTE: You may have lots of old uibuilder folders lying around. If your url change is rejected and you can’t think why, check the folders.

	Check for duplicate url moved to v3 Admin API. API Test file updated.

	Further improvements to the techical documentation. This is now available online [https://totallyinformation.github.io/node-red-contrib-uibuilder] as well as from the uibuilder node configuration panel and the help panel in the Editor.

	Improved links from the Node-RED Editor’s help panel, particularly on how to use the uibuilderfe front-end library.

	Extensive improvements to the
documentation for working with the uibuilderfe library [https://totallyinformation.github.io/node-red-contrib-uibuilder/#/front-end-library] in your front-end code.

	The default Vue template now defines the data section as a method instead of an object. This is recommended and prepares for Vue v3.

3.1.3 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v3.1.1...v3.1.3]

Fix (kind of)

Issue #102 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/110]

It seems that npm is incapable of safely being called from within a preinstall or postinstall npm script.

Every effort at trying to achieve this in order to install vue and bootstrap-vue has failed.

So I have removed this processing completely.

The result of this is that you must install vue and bootstrap-vue yourself if they aren’t already installed (and if you want to use them of course).

You should instal v2 versions however, not v3 since there are a lot of breaking changes in vue v3 that have not been tested with uibuilder.
The installation command is:

#cd <userDir>
npm install vue@"2.*" bootstrap-vue@"2.*"

3.1.2 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v3.1.1...v3.1.2]

This is a tweak to 3.1.1 to enable a workaround for the npm install issues.

Issue

	Issue #102 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/110] The npm post install script has very unexpected and unwelcome side-effects that appear to be issues with npm itself. It seems that you cannot reliably run npm from within npm.

There does not appear to be a reliable fix at this time. Set the environment variable UIBNOPRE to ‘true’ before installation to avoid the problem if you hit it. You should then install vue v2 and bootstrap-vue v2 manually if you need to:

#cd <userDir>
npm install vue@"2.*" bootstrap-vue@"2.*"

I will attempt to find another way to install vue and bootstrap-vue since in uibuilder v1/v2 you could not remove either of them. Some people don’t want these libraries and so want to be able to remove them.

New

	Added environment variable UIBNOPPRE processing to the pre-install script

	Added environment variable UIBDEBUG processing to the pre-install script

Changed

	Removed Vue and bootstrap-vue peer dependencies from this package since they are actually dependencies for the userDir folder. Gets rid of the warnings. Vue and bootstrap-vue are installed by the pre-install script unless you set an environment variable UIBNOPRE to ‘true’ before installation.

	Post-install script is now a pre-install script.

3.1.1 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v3.1.0...v3.1.1]

Emergency fix.

The permissions feature of the Node-RED Admin API does not seem to work as documented.

RED.httpAdmin.get('/uibgetfile', RED.auth.needsPermission('read'), function(req,res) {
 //
})

Should allow you to have a user defined with “read” permission and they would be allowed to access the API endpoint.
However, as far as I can tell, this does not work.

I have removed all permissions from the API endpoints until someone can work out how to do this correctly.

Until then, all you can do is to remove the default user in settings.js so that defined users have no access until they have logged in.

There is no longer a separation between read and write permissions I’m afraid.

3.1.0 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v3.0.1...v3.1.0]

Fixed

	Issue #106 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/106] Editor: When editing files, a filename with a leading dot did not set the filetype correctly.

	Issue #105 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/105] Editor: Attempting to edit a hidden file (with a leading dot) resulted in an error and white screen.

New

	Issue #108 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/108] You can now view the uibuilder package docs (the ones in this package) by going to the url <node-red-editor-url>/uibuilder/techdocs.

The package docs use Docsify [https://docsify.js.org/#/?id=docsify] for formatting. The docs include a search feature as well.

The docs are linked to from both the uibuilder help information panel and from a new button in the configuration panel.

	The config editor has a new button Instance Details. clicking the button will show a new page in a new tab. The page contains debug details of the exact settings for the uibuilder instance. This should help people better understand all of the settings including folders and urls.

Changed

Editor, “Edit Source Files” improvements:

	ALL folders and files within the <uibRoot>/<url> folder can now be edited.

	Soft- or Hard-linked folders and files can now be used. This lets you put your front-end resources wherever you like as long as you create a soft or hard link into the <uibRoot>/<url> folder.

	Added better information toasts on file create/delete actions.

Pop-up notifications are now given when you create/delete folders and files.

	Made keyboard enter button do the default action in the create dialog windows.

	Added more information to the create/delete dialog windows. (url, folder name, file name)

	Issue #102 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/102] Relaxed the file-type checks when editing files. Allows for use of more ACE file-types and prepares the way for the introduction of the Monaco editor in Node-RED v2.

	Issue #107 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/107] Allowed the selection of any folder or sub-folders in the file editor.

The editor still constrains you to the folder for the instance but any folder within that root can be viewed. New sub-folders can be created and existing ones deleted.

	Issue #109 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/109] Persist the selection of folder and file when editing.

This means that closing and reopening the editor will return to the last edited file.

Uses browser local storage and so does not work with Internet Explorer (which hasn’t been supported by uibuilder since v3.0.0).

	Improved display when no file is available to edit or if the file cannot be opened.

	Started moving to new v3 admin API’s that are more consistent with less overheads.

	Changed “Edit Source Files” button to say “Edit Files”. Recognising the additional capabilities.

	Changed button link names in the configuration panel to clarify and accommodate the 2 extra buttons for the instance details and technical docs links.

uibuilder.js:

	Started to simplify and rationalise API checks and reporting. Deprecated /uibfiles, /uibnewfile, /uibdeletefile API’s, replaced with new v3 admin API /uibuilder/admin/:url. Simplifies the admin API’s, makes them more consistent and reduces the number of URL’s.

	Added v3 admin API’s to create new and delete files and folders

	Added /uibuilder/instance/<url> admin API. Is created for each instance. Calling it will show a detailed information page for the given uibuilder instance.

Other

	Updated dependencies

	Installer: Improved the post-install console message (Post Install takes a while). Also forces VueJS to v2.x (not v3 as yet which will soon be the latest version because there are currently too many breaking changes).

3.0.1 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v3.0.0...v3.0.1]

Changed

	Fix for Issue #100 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/100] - Detection of whether Node-RED is currently using https.

	Fix for Issue #93 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/93] - Full screen editor doesn’t work correctly for mobile users. Replaced custom code with equivalent feature from core.

	Remove test code from uibuilder.html

3.0.0 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/compare/v2.0.8...v3.0.0]

Summary

As this contains rather a lot of changes, here is a summary of the key changes for users of the node. The details are in the following sections.

	Breaking Changes

	Minimum Node-RED version is now 1.0

	Minimum Node.js version is 10

	IE11 and other older browsers now no longer guaranteed to work. All modern browsers including mobile and Microsoft Edge (Chromium) should work.

	New feature in uibuilderfe to be able to transparently feed data and configuration to VueJS components written to be compatible.

	New feature in uibuilderfe to be able to transparently create notification popovers (toasts) by sending a msg from Node-RED (no code needed).

	New security documentation - still evolving for the experimental security features

	vue and bootstrap-vue packages can now be removed (NB: if uibuilder previously installed, you need to remove and reinstall for this to be possible)

	Scoped packages can now be added and removed

	Improved Editor configuration panel layout for Advanced Settings

	Some simplification of the default VueJS JavaScript template. Makes it a little easier to read.

	New template file <uibRoot>/.config/security.js - used to give you control over the security process, please read the caveats before attempting to use in this version. Do not use in a live environment, for development only right now.

New

	By sending a msg from Node-RED with a pre-defined format, you can interact with VueJS with minimal or no front-end code

	With no code at all, you can show a popover notification (toast) to the web page.

	With as little as a single line of HTML, you can control and send values to a custom uibuilder compatible VueJS component.

Suitable components are in development. See the experimental module uibuilder-vuejs-component-extras [https://github.com/TotallyInformation/uibuilder-vuejs-component-extras] for some example components. Specifically the <gauge> component which is being developed as an exemplar and will be moved to a separate npm module at some point.

The idea being to bridge some of the gap between the ease of use of Node-RED’s Dashboard and the flexibility of uibuilder. Without needing to be a web development expert.

This will be further enhanced in future releases

	NOTE To use the Vue features, you need to pass a reference to your Vue app to uibuilder.
This is normally as simple as changing uibuilder.start() to uibuilder.start(this)

	This feature does not currently work with all Vue components. See the docs for an alternate low-code version.

	Moved pre-installed VueJS and bootstrap-vue to be installed into <userDir> instead of into the uibuilder package folder.

This allows the vue and bootstrap-vue packages to be uninstalled like everything else and resolves Issue #75 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/75].

Note that, at present, I have not added any clever code to remove the old installations of vue and bootstrap-vue. If you want to get them into the right place, remove and re-add uibuilder. Note that you don’t need to do anything unless you want to be able to remove vue and bootstrap-vue.

	uibuilderfe: Added msg._socketId to sent messages.

	Added security documentation (Work in progress).

Read these to understand how to use uibuilder security and how it works (respectively).

uibuilder Security Documentation and security.js Technical Documentation.

	Added new VueJS documentation Vue Component Handling.

Changed

	Documentation: Greatly improved documentation coverage in the /docs folder. This contains a lot of developer documentation which should make it easier to work on improvements to uibuilder in the future. Still a work in progress.

	Documentation now uses Docsify for presentation and easier reading. Open ./docs/index.html in your browser.

	Editor: Tidy up the Advanced Settings section of the configuration panel.

	uibuilderfe: Internal improvements to get/set functions.

	uibuilderfe: Simplify default Vue templates.

	Further code tidy up.

	Add code isolation to Editor config code to prevent namespace clashes.

	Improve standardisation of output topic.

	Moved some serveStatic code back to instance level to allow caching to be changed by config.

	Changed palette category name from “UI Builder” to “uibuilder” and palette label to “uibuilder” from “UI Builder” for consistency with other nodes.

	Moved all front-end master code (e.g. nodes/src and nodes/dist) to new top-level folder front-end & refactored uibuilder.js accordingly. Folder references also changed to new properties in the uib variable.

	Moved the templates folder from nodes to its own top-level folder and refactored uibuilder.js accordingly. The folder reference is held in the uib.masterTemplateFolder variable.

	Change minify of uibuilderfe from uglify-js to bable-minify because uglify-js does not support ES6+

Fixed

	Running behind a proxy was causing Socket.IO namespace issues (see Issue #84 [https://github.com/TotallyInformation/node-red-contrib-uibuilder/issues/84]
Removing httpRoot from the namespace should fix that. It is no longer required anyway since url uniqueness checks were added.

Experimental and partially working new features

WARNING: Consider these features experimental, some parts may not work and might even cause Node-RED to crash if used. Do not yet use on production.

Leave the security flag OFF for production.

NOT YET FULLY WORKING

	Added configuration option to add browser/proxy caching control to all static assets - set the length of time before assets will be reloaded from the server. This may sometimes significantly improve performance in the browser. It depends on the performance of your server and the complexity of the UI.

Added on options variable for serve-static to allow control of caching & other headers. uib.staticOpts.

Some static folders are served at module level and so don’t have access to instance settings. Would likely need to have different settings on global serves from instance ones. Needs more thought.

This lets you control caching of your “static” assets like JavaScript, HTML, CSS, Images and any installed front-end library resources (Vue, etc).

Note that this is not for caching the msg’s coming through the node, see the caching examples in the WIKI for that.

	If you use Node-RED’s projects feature, restart Node-RED after changing projects otherwise uibuilder will not recognise the new root folder location.

New security features

Summary

Security is mostly controlled via websocket messages, not by HTTP. The web UI itself is assumed to be non-sensitive. Only msg transfer is controlled. Read the security document for details. Don’t put anything sensitive into your front-end code.

	Security features can be turned on via a flag in the node configuration. They are off by default.

	If running in Production mode but without using TLS encryption, the security won’t turn on. This is to stop you sending secure information in plain-text over the wire. In Development mode, you will get a warning.

	Added a new standardised property to uibuilder control msg’s. msg._auth. This contains all the necessary data for logon and ongoing session maintenance. As a minimum, this must contain an id property which uniquely identifies the user. It will also contain the JWT token since websockets don’t allow custom headers.

	Security does use JWT but only as a convenience. JWT is NOT a security feature (despite what much of the web would have you believe). Session processing is required if you want real security. Again, see the security doc for details.

	Logon/logoff processing is done from the front-end using new logon() and logoff() functions in uibuilderfe.

	Logon/logoff and logon failure events are reported via uibuilder’s control port (output port #2).

	Added security headers to protect against XSS and content sniffing.

	All custom security processing (validating user details - including password - and session validation/extension) is done via standard functions in the new <uibRoot>/.config/security.js file. A simple template is provided for you to use as a starting point. You can also override this with custom processing for a single instance by using <uibRoot>/<url>/security.js.

Details

	uibuilderfe: Added .logon(...) and .logoff() functions.

The logon function takes a single parameter which must be an Object (sch